【2021-CVPR-3D人体姿态估计】Graph Stacked Hourglass Networks for 3D Human Pose Estimation

本文主要是介绍【2021-CVPR-3D人体姿态估计】Graph Stacked Hourglass Networks for 3D Human Pose Estimation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Graph Stacked Hourglass Networks for 3D Human Pose Estimation

题目:《用于3D人体姿态的图堆叠沙漏网络》

作者

来源:CVPR 2021

研究内容:

        单人-单视图-有监督

创新点:

        •提出适用于多尺度人体骨骼特征提取的Graph Hourglass模块,包括考虑人体骨骼结构的新型池化和解池操作——骨骼池化和骨骼Unpool(反池化)

        •其次,我们引入了图堆叠沙漏网络(Graph Stacked Hourglass Networks, GraphSH),由提出的图沙漏模块组成,该模块在架构的不同深度包含多层次的特征表示。

现有技术

        图卷积(只能在一个单一尺度上对特征进行处理,难以提取表征空间的局部和全局空间信息,限制了模型的表征能力,没有利用模型的深度特点)。

        通常对于图像特征提取,分为

        由于图结构的不规范性,其不能直接使用图像特征提取的方法,本文提出图堆叠沙漏网络、改为适用于图结构模型的

        因人体骨架的拓扑结构特点,可以被视为图结构,因此越来越多的实验选用图卷积(GCN)

(本文中“图堆叠网络”的“堆叠”是指重复提取特征,以此提高模型性能)

数据集:

    Human3.6M数据集是在三维人体姿态估计任务中使用最广泛的数据集。它利用运动捕捉获取被测对象的三维姿态信息,并通过4个不同方向的摄像机记录相应的视频图像信息。根据所提供的摄像机参数,我得到每一帧图像中对应的2D联合坐标的ground truth。该数据集通过记录11名专业演员表演的15种不同动作,如吃饭、走路等,提供了360万张图像。本实验中,主要使用Human3.6M进行训练和测试。其评价指标为:MPJPE协议1和MPJPE协议2。

    MPI-INF-3DHP测试集提供了三种不同场景的图像:有绿屏的工作室(GS)、没有绿屏的工作室(noGS)和户外场景(outdoor)。本文使用这个数据集来测试网络的泛化性能。其评价指标为:3DPCK和AUC。

这篇关于【2021-CVPR-3D人体姿态估计】Graph Stacked Hourglass Networks for 3D Human Pose Estimation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451350

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

GPU 计算 CMPS224 2021 学习笔记 02

并行类型 (1)任务并行 (2)数据并行 CPU & GPU CPU和GPU拥有相互独立的内存空间,需要在两者之间相互传输数据。 (1)分配GPU内存 (2)将CPU上的数据复制到GPU上 (3)在GPU上对数据进行计算操作 (4)将计算结果从GPU复制到CPU上 (5)释放GPU内存 CUDA内存管理API (1)分配内存 cudaErro

2021-8-14 react笔记-2 创建组件 基本用法

1、目录解析 public中的index.html为入口文件 src目录中文件很乱,先整理文件夹。 新建components 放组件 新建assets放资源   ->/images      ->/css 把乱的文件放进去  修改App.js 根组件和index.js入口文件中的引入路径 2、新建组件 在components文件夹中新建[Name].js文件 //组件名首字母大写

2021-08-14 react笔记-1 安装、环境搭建、创建项目

1、环境 1、安装nodejs 2.安装react脚手架工具 //  cnpm install -g create-react-app 全局安装 2、创建项目 create-react-app [项目名称] 3、运行项目 npm strat  //cd到项目文件夹    进入这个页面  代表运行成功  4、打包 npm run build

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用,模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇,同时也伴随着一系列需要克服的挑战,如何看待企业引进增材制造,小编为您全面分析。 机遇篇: 加速产品创新:3D打印技术如同一把钥匙,为模具企业解锁了快速迭代产品设计的可能。企业能够迅速将创意转化为实体模型,缩短产品从设计到市场的周期,抢占市场先机。 强化定制化服务:面