基于Matlab机器人系统工具箱(Robotics System Toolbox)对库卡LBR Med 7 R800进行建模分析(一)

本文主要是介绍基于Matlab机器人系统工具箱(Robotics System Toolbox)对库卡LBR Med 7 R800进行建模分析(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讲解利用机器人系统工具箱(Robotics System Toolbox)对库卡LBR Med 7 R800进行建模,以及利用模型对其进行正、逆解运算分析,库卡LBR Med 7 R800本体图如下:

 首先利用Matlab机器人系统工具箱(Robotics System Toolbox)中的刚体树(rigidbodytree)对机器人进行建模,代码如下:

%创建一个机器人刚体树对象,取名为robot
robot=robotics.RigidBodyTree("MaxNumBodies",9,"DataFormat","row");
%创建九个关节和九个刚体
body0=robotics.RigidBody("body0");
jnt0=robotics.Joint("jnt0","fixed");
body1=robotics.RigidBody("body1");
jnt1=robotics.Joint("jnt1","revolute");
body2=robotics.RigidBody("body2");
jnt2=robotics.Joint("jnt2","revolute");
body3=robotics.RigidBody("body3");
jnt3=robotics.Joint("jnt3","revolute");
body4=robotics.RigidBody("body4");
jnt4=robotics.Joint("jnt4","revolute");
body5=robotics.RigidBody("body5");
jnt5=robotics.Joint("jnt5","revolute");
body6=robotics.RigidBody("body6");
jnt6=robotics.Joint("jnt6","revolute");
body7=robotics.RigidBody("body7");
jnt7=robotics.Joint("jnt7","revolute");
body8=robotics.RigidBody("body8");
jnt8=robotics.Joint("jnt8","fixed");
%对七个旋转关节做角度限制
jnt1.PositionLimits=[-170*((2*pi)/360) 170*((2*pi)/360)];
jnt2.PositionLimits=[-120*((2*pi)/360) 120*((2*pi)/360)];
jnt3.PositionLimits=[-170*((2*pi)/360) 170*((2*pi)/360)];
jnt4.PositionLimits=[-120*((2*pi)/360) 120*((2*pi)/360)];
jnt5.PositionLimits=[-170*((2*pi)/360) 170*((2*pi)/360)];
jnt6.PositionLimits=[-120*((2*pi)/360) 120*((2*pi)/360)];
jnt7.PositionLimits=[-175*((2*pi)/360) 175*((2*pi)/360)];
%定义各个关节之间的旋转和平移
setFixedTransform(jnt1,[1 0 0 0;0 1 0 0;0 0 1 0.157;0 0 0 1]);
setFixedTransform(jnt2,[-1 0 0 0;0 0 1 0;0 1 0 0.183;0 0 0 1]);
setFixedTransform(jnt3,[-1 0 0 0;0 0 1 0.217;0 1 0 0;0 0 0 1]);
setFixedTransform(jnt4,[1 0 0 0;0 0 -1 0;0 1 0 0.183;0 0 0 1]);
setFixedTransform(jnt5,[-1 0 0 0;0 0 1 0.217;0 1 0 0;0 0 0 1]);
setFixedTransform(jnt6,[1 0 0 0;0 0 -1 0;0 1 0 0.183;0 0 0 1]);
setFixedTransform(jnt7,[-1 0 0 0;0 0 1 0.091;0 1 0 0;0 0 0 1]);
setFixedTransform(jnt8,[1 0 0 0;0 1 0 0;0 0 1 0.035;0 0 0 1]);
%把各个关节附着到各个刚体上
body0.Joint=jnt0;
body1.Joint=jnt1;
body2.Joint=jnt2;
body3.Joint=jnt3;
body4.Joint=jnt4;
body5.Joint=jnt5;
body6.Joint=jnt6;
body7.Joint=jnt7;
body8.Joint=jnt8;
%把各个刚体"安装"到刚体树(robot)上
addBody(robot,body0,"base");
addBody(robot,body1,"body0");
addBody(robot,body2,"body1");
addBody(robot,body3,"body2");
addBody(robot,body4,"body3");
addBody(robot,body5,"body4");
addBody(robot,body6,"body5");
addBody(robot,body7,"body6");
addBody(robot,body8,"body7");
show(robot);
showdetails(robot);

运行上述代码,可以看到:图一所示的机器人模型图(命令:show(robot)),图二中在命令行窗口显示的该机器人的详细组成信息(命令:showdetails(robot)),图三中工作区显示的机器人(robot)、关节(joint)、连杆(body)的属性数值。

图一 

 图二

图三 

然后,我们做机器人的逆解运算,代码如下:

%给定末端的位置和欧拉角姿态
weizhi=[500 200 300];%单位 mm
zitai=[0 0 0];%单位 °
tform=trvec2tform(weizhi./1000)*eul2tform(zitai.*(pi/180));%根据位置和姿态,将其转换为齐次矩阵
%定义一个逆解求解器
ik=robotics.InverseKinematics("RigidBodyTree",robot);
%设置求解各个量的权重,前三个是欧拉角、后三个是位置
weights=[0.25 0.25 0.25 1 1 1];
%定义求解器的初始参考位置
initialguess=robot.homeConfiguration;
%开始求解,其中逆解求解结果存放在configSoln中
[configSoln,solnInfo]=ik("body8",tform,weights,initialguess);
%判断求解是否成功,如果成功,打印显示逆解数值(单位是°)
if(solnInfo.Status=="success")fprintf("逆解是:")nijie=configSoln.*(180/pi);disp(nijie)
elsefprintf("所求无解")
end

运行上诉代码后,在命令行窗口可以看到如图四所示的逆解结果(注意,逆解数值不唯一)。

 图四

最后,我们可以对机器人求解正解,代码如下:

%给定各个关节的角度数值
q=[30 30 30 30 30 30 30];%单位是°
transform=getTransform(robot,q.*(pi/180),"body8","body0");
moduanweizhi=tform2eul(transform).*(180/pi);%末端角度数值
moduanzitai=tform2trvec(transform).*1000;%位置数值
fprintf("\n位置是:")
disp(moduanweizhi)
fprintf("\n姿态是:")
disp(moduanzitai)

 运行上诉代码后,可以在命令行窗口中查看其结果,如图五所示。

 图五

此模型已经利用库卡LBR Med 7 R800真机对其正逆解进行了准确性验证,完全ok!

我们如果想看机器人在特定关节角度下机器人的位姿,可以运行如下代码:

q=[50 30 30 30 40 21 34];%输入各个关节角度,单位式°
q=q*(pi/180);%角度转弧度
show(robot,q);

运行上诉代码后,可看到特定关节角度下机器人的位姿,如图六所示。

 图六

这篇关于基于Matlab机器人系统工具箱(Robotics System Toolbox)对库卡LBR Med 7 R800进行建模分析(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398932

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis