本文主要是介绍机器学习-概率图模型:隐马尔可夫模型(HMM)【解决序列问题】【前提假设:隐层状态序列符合马尔可夫性、观测序列的各观测值相互独立】【被RNN等神经网络模型取代】【生成模型:对联合概率建模】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、概述
隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,HMM是解决序列(时间序列、状态序列)问题的模型。在语言识别,自然语言处理,模式识别等领域得到广泛的应用。
当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降。
但是作为一个经典的模型,学习HMM的模型和对应算法,对我们解决问题建模的能力提高以及算法思路的拓展还是很好的。
1、什么样的问题需要HMM模型
首先我们来看看什么样的问题解决可以用HMM模型。使用HMM模型时我们的问题一般有这两个特征:
- 我们的问题是基于序列的,比如时间序列,或者状态序列。
- 我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。
有了这两个特征,那么这个问题一般可以用HMM模型来尝试解决。
这样的问题在实际生活中是很多的。比如
这篇关于机器学习-概率图模型:隐马尔可夫模型(HMM)【解决序列问题】【前提假设:隐层状态序列符合马尔可夫性、观测序列的各观测值相互独立】【被RNN等神经网络模型取代】【生成模型:对联合概率建模】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!