首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
隐层专题
机器学习-概率图模型:隐马尔可夫模型(HMM)【解决序列问题】【前提假设:隐层状态序列符合马尔可夫性、观测序列的各观测值相互独立】【被RNN等神经网络模型取代】【生成模型:对联合概率建模】
一、概述 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,HMM是解决序列(时间序列、状态序列)问题的模型。在语言识别,自然语言处理,模式识别等领域得到广泛的应用。 当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降。 但是作为一个经典的模型,学习HMM的模型和对应算法,对我们解决问题建模
阅读更多...
神经网络中隐层数和隐层节点数问题的讨论
转载https://blog.csdn.net/kingzone_2008/article/details/81291507 神经网络中隐层数和隐层节点数问题的讨论 一 隐层数 一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)
阅读更多...