本文主要是介绍具有形状参数的新型广义混合三角贝齐尔样曲线(GHT_Bezier_curves) matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
具有形状参数的新型广义混合三角贝齐尔样曲线
- 一、n维 GHT-Bernstein 基函数
- 1、定义
- 2、性质:
- 二、基函数的matlab程序实现
- 1、程序:
- 2.2 基函数图像
- 三、n维GHT-Bézier曲线(GHT-Bézier Curves of Degree n)
- 相应程序:
- 相应结果:
- 注:得到的曲线应该满足凸包性质,但是有几个参数得到的曲线不在控制多边形里面(如b图中红色曲线),程序检查了几遍没查出来原因,因为这篇文章就是借鉴一下想法,就不继续研究下去了。
参考文献:Geometric Modeling of Novel Generalized Hybrid Trigonometric Bézier-Like Curve with Shape Parameters and Its Applications
本博客是对上述参考文献的部分程序实现
一、n维 GHT-Bernstein 基函数
1、定义
论文中给出的 q 2 , 2 ( θ ) q_{ 2,2}(θ) q2,2(θ)定义不对,不满足端点性质。需要修改一点。
下面是我修改的定义,以及写出的三阶公式:
2、性质:
- 单位分解性。
- 正性。
- 对称性。
- 端点插值性。
二、基函数的matlab程序实现
1、程序:
function GHT_Bernstein
% 三阶GHT_Bernstein基函数图像
clear;clc;
% Gma = 1; %Gma = γ
% v = 0.2;
% beta = 0; %β
Gma = 0.5; % Gma = γ
beta = 0; % β
v = -0.5;
x = (0:0.01:1)';
y = F0_3(x,v,Gma);
y1 = F2_3(x,v,beta,Gma);
y2 = F1_3(x,v,beta,Gma);
y3 = F3_3(x,v,Gma);
plot(x,y,'y')
title('三阶GHT-Bernstein基函数')
hold on
plot(x,y1,'b')
hold on
plot(x,y2,'g')
hold on
plot(x,y3,'r')% 二阶GHT_Bernstein基函数图像 (可以直接在命令行使用)
Gma = 0.5; % Gma = γ
beta = 0; % β
v = -0.5;x = (0:0.01:1)';
y = F1_2(x,v,beta,Gma);
y1 = F2_2(x,beta,Gma);
y2 = F0_2(x,v,Gma);
figure(2)
plot(x,y,'y')
title('二阶GHT-Bernstein基函数')
hold on
plot(x,y1,'b')
hold on
plot(x,y2,'r')
endfunction g = F0_2(x,v,Gma)
g = (1-sin(0.5*pi*x)).*(1-v*sin(0.5*pi*x)).*exp(Gma*x);
endfunction g = F1_2(x,v,beta,Gma)
g = 1 - F0_2(x,v,Gma) - F2_2(x,beta,Gma);
endfunction g = F2_2(x,beta,Gma)
g = (1-cos(0.5*pi*x)).*(1-beta*cos(0.5*pi*x)).*exp((1-x)*Gma);
endfunction g = F0_3(x,v,Gma)
g = (1-x).*F0_2(x,v,Gma);
endfunction g = F1_3(x,v,beta,Gma)
g = (1-x).*F1_2(x,v,beta,Gma) + x.*F0_2(x,v,Gma);
endfunction g = F2_3(x,v,beta,Gma)
g = (1-x).*F2_2(x,v,Gma)+x.*F1_2(x,v,beta,Gma);
endfunction g = F3_3(x,v,Gma)
g = x.*F2_2(x,v,Gma);
end
2.2 基函数图像
三、n维GHT-Bézier曲线(GHT-Bézier Curves of Degree n)
相应程序:
function [Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma)
px=[0,2,3,5];
py=[0,1,0,1]; % 控制顶点(0,0),(2,1),(3,0),(5,1)x = (0:0.005:1)';
y0 = F0_3(x,v,Gma);
y1 = F1_3(x,v,beta,Gma);
y2 = F2_3(x,v,beta,Gma);
y3 = F3_3(x,v,Gma);Px = y0*px(1) + y1.*px(2) + y2*px(3) + y3.*px(4);
Py = y0*py(1) + y1.*py(2) + y2*py(3) + y3.*py(4);endfunction g = F0_2(x,v,Gma)
g = (1-sin(0.5*pi*x)).*(1-v*sin(0.5*pi*x)).*exp(Gma*x);
endfunction g = F1_2(x,v,beta,Gma)
g = 1 - F0_2(x,v,Gma) - F2_2(x,beta,Gma);
endfunction g = F2_2(x,beta,Gma)
g = (1-cos(0.5*pi*x)).*(1-beta*cos(0.5*pi*x)).*exp((1-x)*Gma);
endfunction g = F0_3(x,v,Gma)
g = (1-x).*F0_2(x,v,Gma);
endfunction g = F1_3(x,v,beta,Gma)
g = (1-x).*F1_2(x,v,beta,Gma) + x.*F0_2(x,v,Gma);
endfunction g = F2_3(x,v,beta,Gma)
g = (1-x).*F2_2(x,v,Gma)+x.*F1_2(x,v,beta,Gma);
endfunction g = F3_3(x,v,Gma)
g = x.*F2_2(x,v,Gma);
end
将上述代码保存为函数,用下面代码调用实现:
clear;clc;
%调用GHT_Bezier_curves(v,beta,Gma)函数
% 论文Figure2 中的(a)图像的实现
Gma = 1; % Gma = γ
beta = 0; % β
v = 0.95;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(1)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (a)')
hold on
v = 0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
v = -0.1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
v = -0.6;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on% 论文Figure2 中的(b)图像的实现
Gma = 0.5; % Gma = γ
beta = 0; % β
v = -0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(2)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (b)')
hold on
v = 0;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
v = 0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
v = 1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on% 论文Figure2 中的(d)图像的实现
Gma = 0; % Gma = γ
beta = 1; % β
v = 1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(4)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (d)')
hold on
Gma = 0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
Gma = -0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
Gma = -1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on
相应结果:
注:得到的曲线应该满足凸包性质,但是有几个参数得到的曲线不在控制多边形里面(如b图中红色曲线),程序检查了几遍没查出来原因,因为这篇文章就是借鉴一下想法,就不继续研究下去了。
这篇关于具有形状参数的新型广义混合三角贝齐尔样曲线(GHT_Bezier_curves) matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!