具有形状参数的新型广义混合三角贝齐尔样曲线(GHT_Bezier_curves) matlab实现

本文主要是介绍具有形状参数的新型广义混合三角贝齐尔样曲线(GHT_Bezier_curves) matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具有形状参数的新型广义混合三角贝齐尔样曲线

    • 一、n维 GHT-Bernstein 基函数
      • 1、定义
      • 2、性质:
    • 二、基函数的matlab程序实现
      • 1、程序:
      • 2.2 基函数图像
    • 三、n维GHT-Bézier曲线(GHT-Bézier Curves of Degree n)
      • 相应程序:
      • 相应结果:
      • 注:得到的曲线应该满足凸包性质,但是有几个参数得到的曲线不在控制多边形里面(如b图中红色曲线),程序检查了几遍没查出来原因,因为这篇文章就是借鉴一下想法,就不继续研究下去了。

       
       

参考文献:Geometric Modeling of Novel Generalized Hybrid Trigonometric Bézier-Like Curve with Shape Parameters and Its Applications
       
本博客是对上述参考文献的部分程序实现

一、n维 GHT-Bernstein 基函数

1、定义

在这里插入图片描述
       论文中给出的 q 2 , 2 ( θ ) q_{ 2,2}(θ) q2,2(θ)定义不对,不满足端点性质。需要修改一点。
       下面是我修改的定义,以及写出的三阶公式:

在这里插入图片描述

2、性质:

  1. 单位分解性。
  2. 正性。
  3. 对称性。
  4. 端点插值性。
    在这里插入图片描述
    在这里插入图片描述

二、基函数的matlab程序实现

1、程序:

function GHT_Bernstein
%  三阶GHT_Bernstein基函数图像
clear;clc;
% Gma = 1;        %Gma = γ
% v = 0.2;
% beta = 0;         %β
Gma = 0.5;                                   %  Gma = γ
beta = 0;                                    %  β
v = -0.5;
x = (0:0.01:1)';
y = F0_3(x,v,Gma);
y1 = F2_3(x,v,beta,Gma);
y2 = F1_3(x,v,beta,Gma);
y3 = F3_3(x,v,Gma);
plot(x,y,'y')
title('三阶GHT-Bernstein基函数')
hold on
plot(x,y1,'b')
hold on
plot(x,y2,'g')
hold on
plot(x,y3,'r')% 二阶GHT_Bernstein基函数图像  (可以直接在命令行使用)
Gma = 0.5;                                   %  Gma = γ
beta = 0;                                    %  β
v = -0.5;x = (0:0.01:1)';
y = F1_2(x,v,beta,Gma);
y1 = F2_2(x,beta,Gma);
y2 = F0_2(x,v,Gma);
figure(2)
plot(x,y,'y')
title('二阶GHT-Bernstein基函数')
hold on
plot(x,y1,'b')
hold on
plot(x,y2,'r')
endfunction g = F0_2(x,v,Gma)
g = (1-sin(0.5*pi*x)).*(1-v*sin(0.5*pi*x)).*exp(Gma*x);
endfunction g = F1_2(x,v,beta,Gma)
g = 1 - F0_2(x,v,Gma) - F2_2(x,beta,Gma);
endfunction g = F2_2(x,beta,Gma)
g = (1-cos(0.5*pi*x)).*(1-beta*cos(0.5*pi*x)).*exp((1-x)*Gma);
endfunction g = F0_3(x,v,Gma)
g = (1-x).*F0_2(x,v,Gma);
endfunction g = F1_3(x,v,beta,Gma)
g = (1-x).*F1_2(x,v,beta,Gma) + x.*F0_2(x,v,Gma);
endfunction g = F2_3(x,v,beta,Gma)
g = (1-x).*F2_2(x,v,Gma)+x.*F1_2(x,v,beta,Gma);
endfunction g = F3_3(x,v,Gma)
g =  x.*F2_2(x,v,Gma);
end

2.2 基函数图像

在这里插入图片描述
在这里插入图片描述

三、n维GHT-Bézier曲线(GHT-Bézier Curves of Degree n)

1
在这里插入图片描述
在这里插入图片描述

相应程序:

function [Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma)
px=[0,2,3,5];
py=[0,1,0,1];                              %  控制顶点(0,0),(2,1),(3,0),(5,1)x = (0:0.005:1)';
y0 = F0_3(x,v,Gma);
y1 = F1_3(x,v,beta,Gma);
y2 = F2_3(x,v,beta,Gma);
y3 = F3_3(x,v,Gma);Px = y0*px(1) + y1.*px(2) + y2*px(3) + y3.*px(4);
Py = y0*py(1) + y1.*py(2) + y2*py(3) + y3.*py(4);endfunction g = F0_2(x,v,Gma)
g = (1-sin(0.5*pi*x)).*(1-v*sin(0.5*pi*x)).*exp(Gma*x);
endfunction g = F1_2(x,v,beta,Gma)
g = 1 - F0_2(x,v,Gma) - F2_2(x,beta,Gma);
endfunction g = F2_2(x,beta,Gma)
g = (1-cos(0.5*pi*x)).*(1-beta*cos(0.5*pi*x)).*exp((1-x)*Gma);
endfunction g = F0_3(x,v,Gma)
g = (1-x).*F0_2(x,v,Gma);
endfunction g = F1_3(x,v,beta,Gma)
g = (1-x).*F1_2(x,v,beta,Gma) + x.*F0_2(x,v,Gma);
endfunction g = F2_3(x,v,beta,Gma)
g = (1-x).*F2_2(x,v,Gma)+x.*F1_2(x,v,beta,Gma);
endfunction g = F3_3(x,v,Gma)
g =  x.*F2_2(x,v,Gma);
end

将上述代码保存为函数,用下面代码调用实现:

clear;clc;
%调用GHT_Bezier_curves(v,beta,Gma)函数
%  论文Figure2 中的(a)图像的实现
Gma = 1;                                   %  Gma = γ
beta = 0;                                    %  β
v = 0.95;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(1)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (a)')
hold on
v = 0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
v = -0.1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
v = -0.6;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on%  论文Figure2 中的(b)图像的实现
Gma = 0.5;                                   %  Gma = γ
beta = 0;                                    %  β
v = -0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(2)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (b)')
hold on
v = 0;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
v = 0.5;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
v = 1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on%  论文Figure2 中的(d)图像的实现
Gma = 0;                                   %  Gma = γ
beta = 1;                                    %  β
v = 1;
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
figure(4)
plot(Px,Py,'r',px,py,'b',px,py,'mo')
xlabel('x-axis'), ylabel('y-axes');
title('figure2 (d)')
hold on
Gma = 0.5;   
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'y',px,py,'b',px,py,'m*')
hold on
Gma = -0.5;   
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'m',px,py,'b',px,py,'m*')
hold on
Gma = -1;   
[Px,Py,px,py] = GHT_Bezier_curves(v,beta,Gma);
plot(Px,Py,'g',px,py,'b',px,py,'m*')
hold on

相应结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:得到的曲线应该满足凸包性质,但是有几个参数得到的曲线不在控制多边形里面(如b图中红色曲线),程序检查了几遍没查出来原因,因为这篇文章就是借鉴一下想法,就不继续研究下去了。

      
       
       

这篇关于具有形状参数的新型广义混合三角贝齐尔样曲线(GHT_Bezier_curves) matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248979

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体