【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )

本文主要是介绍【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、最短路径
  • 二、图最短路径算法使用场景
  • 三、求解图中任意两个点之间的最短路径
  • 四、邻接矩阵存储图数据
  • 五、只允许经过 1 号点中转得到任意两点之间的最短路径
  • 六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径
  • 七、在之前的基础上-只允许经过 1、2 、...、n 号点中转得到任意两点之间的最短路径
  • 八、弗洛伊德算法总结

图的最短路径算法 : 有如下四种 ;

  • 弗洛伊德算法 Floyed ;
  • 迪杰斯特算法 Dijstra ;
  • 贝尔曼-弗洛伊德算法 Bellman-Floyed ;
  • SPFA 算法 Shortest Path Faster Algorithm ;

本篇博客介绍 弗洛伊德 算法 ;





一、最短路径



中 , 结点 之间的 边 带有权值 , 则该图就是 带权图 ;


边的 权值 可以理解为 两个结点 之间的 距离 或者 消耗时间 ,

从 结点 A 到 结点 B 有不同的路径 ,

将这些路径的 边 的 权值 相加 , 权值总和最小的路径 , 就是 最短路径 ;


举例说明 : 下图 中 , 求 C4 结点 到 C6 结点 的最短路径 ;
在这里插入图片描述

C4 结点 到 C6 结点的路径 :

  • C4 -> C6 : 权值累加总和为 9 ;
  • C4 -> C5 -> C6 : 权值累加总和为 8 ;
  • C4 -> C3 -> C5 -> C6 : 权值累加总和为 8 ;

其它的路径更远 , 可以看到其最短路径是 后两种 , 最短路径为 8 ;





二、图最短路径算法使用场景



图最短路径算法使用场景 :

  • 管道铺设
  • 线路安装
  • 地图规划




三、求解图中任意两个点之间的最短路径



在这里插入图片描述

假设图中有任意两个点 , A 点 和 B 点 ,

要令 A 到 B 之间的 距离 变短 , 只能 引入 第三个点 K , A 先到 K , 然后从 K 到 B ,

此时 A -> B 的路径 可能 小于 A -> K -> B 的路程 ;


中转点 的 个数 可能需要多个 , A 到 B 可能中间途径多个 中转点 , 使得 两个结点 之间的距离更短 ;


以上图为例 , 从 结点 4 到 结点 3 的直接距离为 12 ,

如果 找一个途经点 , 从 结点 4 先到 结点 1 , 然后从 结点 1 到 结点 3 , 最终的距离为 11 ;


如果 找 2 个途径点 , 节点 4 -> 结点 1 -> 结点 2 -> 结点 3 , 距离为 10 ;


每个顶点 都有可能 缩短 另外两个 顶点 之间的距离 ;





四、邻接矩阵存储图数据



使用 邻接矩阵 存储 下图信息 ;

在这里插入图片描述

下图中 使用 二维数组 int[][] edge 存储邻接矩阵 , 二维数组 元素的值为 两个点 之间的 边 的 权重 ;

如 : edge[1][2] 是 从 结点 1 到 结点 2 之间的 边 的权重 ;


邻接矩阵 取值 :

  • 两个结点之间存在边 : 邻接矩阵 取值 就是这个 边 的权重 ;
  • 两个结点之间不存在边 : 如果 没有可达 的边 , 如 结点 2 -> 结点 1 没有直达的边 , 则距离设置为 无穷大 ;
  • 结点到其本身的距离 : 约定为 0 ;

在这里插入图片描述





五、只允许经过 1 号点中转得到任意两点之间的最短路径



在上述 邻接矩阵 int[][] edge 中 , 求 结点 i 到 结点 j 之间的 最短路径 , 并且只允许从 结点 1 进行中转 ;

结点 i 到 结点 j 的距离为 edge[i][j] ,

结点 i 到 结点 1 的距离为 edge[i][1] , 结点 1 到 结点 j 的距离为 edge[1][j] , 其 总的距离为 edge[i][1] + edge[1][j] ,

如果 edge[i][1] + edge[1][j] < edge[i][j] , 则 结点 i 到 结点 j 之间的距离缩短了 , edge[i][1] + edge[1][j] 就是其当前的 最短路径 ;


// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

更新后的 邻接矩阵 变为下图所示 :

在这里插入图片描述

原来 结点 3 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 3 -> 1 -> 2 的距离为 9 , 距离缩短了 ;

原来 结点 4 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 4 -> 1 -> 2 的距离为 7 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 之间没有边 , 距离为 12 , 现在通过 1 中转 , 4 -> 1 -> 3 的距离为 11 , 距离缩短了 ;





六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径



上一个章节中 , 已经求出 只允许经过 1 号顶点时 , 任意两点的 最短路径 ;

本章节中 , 在上一章节的基础上 , 再求 经过 2 号顶点 , 是否能 得到 任意两个 结点 , 结点 i 到 结点 j 之间的 最短路径 ;


算法代码如下 :

// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}// 只允许经过 1、2 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

在这里插入图片描述

原来 结点 1 -> 结点 3 的 距离为 6 , 现在通过 2 中转 , 1 -> 2 -> 3 的距离为 5 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 距离为 11 , 路径为 4 -> 1 -> 3 , 现在再通过 2 中转 , 4 -> 1 -> 2 -> 3 , 新的距离为 10 , 距离缩短了 ;





七、在之前的基础上-只允许经过 1、2 、…、n 号点中转得到任意两点之间的最短路径



经过所有点的遍历 , 也就是经过 1、2 、3、4 号点之后 , 得到的 邻接矩阵 中 , 所有的 任意 两个点之间的距离都是最小距离 ;

代码参考 :

// k 代表结点个数 , 经过 1 ~ n 结点中转 , 每次增加一个点
// 就将 邻接矩阵 中的 最短路径 重新计算一遍 
for(int k = 1; k < n; k++) {for(int i = 1; i < n; i++) {for(int j = 1; j < n; j++) {if(edge[i][j] > edge[i][k] + edge[k][j]) {edge[i][j] = edge[i][k] + edge[k][j];}}}	
}

执行上述算法后 , 邻接矩阵 中的元素值 , 就是对应的 任意两个点 之间的最小距离 ;





八、弗洛伊德算法总结



弗洛伊德算法 可以 计算出 图中 任意两个点 的最短路径 ;

弗洛伊德算法的 时间复杂度是 O ( n 3 ) \rm O(n^3) O(n3) , 因为其嵌套了 3 层 for 循环 ; 结点数量小于 200 , 都可以使用该算法 ;

如果 图 中 , 边的权重 有 负数 , 并且 负数 所在边 与其它的边 组成了一个环 , 则不能使用 弗洛伊德算法 处理 ;

负环示例 :

在这里插入图片描述

这篇关于【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247230

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机