【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )

本文主要是介绍【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、最短路径
  • 二、图最短路径算法使用场景
  • 三、求解图中任意两个点之间的最短路径
  • 四、邻接矩阵存储图数据
  • 五、只允许经过 1 号点中转得到任意两点之间的最短路径
  • 六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径
  • 七、在之前的基础上-只允许经过 1、2 、...、n 号点中转得到任意两点之间的最短路径
  • 八、弗洛伊德算法总结

图的最短路径算法 : 有如下四种 ;

  • 弗洛伊德算法 Floyed ;
  • 迪杰斯特算法 Dijstra ;
  • 贝尔曼-弗洛伊德算法 Bellman-Floyed ;
  • SPFA 算法 Shortest Path Faster Algorithm ;

本篇博客介绍 弗洛伊德 算法 ;





一、最短路径



中 , 结点 之间的 边 带有权值 , 则该图就是 带权图 ;


边的 权值 可以理解为 两个结点 之间的 距离 或者 消耗时间 ,

从 结点 A 到 结点 B 有不同的路径 ,

将这些路径的 边 的 权值 相加 , 权值总和最小的路径 , 就是 最短路径 ;


举例说明 : 下图 中 , 求 C4 结点 到 C6 结点 的最短路径 ;
在这里插入图片描述

C4 结点 到 C6 结点的路径 :

  • C4 -> C6 : 权值累加总和为 9 ;
  • C4 -> C5 -> C6 : 权值累加总和为 8 ;
  • C4 -> C3 -> C5 -> C6 : 权值累加总和为 8 ;

其它的路径更远 , 可以看到其最短路径是 后两种 , 最短路径为 8 ;





二、图最短路径算法使用场景



图最短路径算法使用场景 :

  • 管道铺设
  • 线路安装
  • 地图规划




三、求解图中任意两个点之间的最短路径



在这里插入图片描述

假设图中有任意两个点 , A 点 和 B 点 ,

要令 A 到 B 之间的 距离 变短 , 只能 引入 第三个点 K , A 先到 K , 然后从 K 到 B ,

此时 A -> B 的路径 可能 小于 A -> K -> B 的路程 ;


中转点 的 个数 可能需要多个 , A 到 B 可能中间途径多个 中转点 , 使得 两个结点 之间的距离更短 ;


以上图为例 , 从 结点 4 到 结点 3 的直接距离为 12 ,

如果 找一个途经点 , 从 结点 4 先到 结点 1 , 然后从 结点 1 到 结点 3 , 最终的距离为 11 ;


如果 找 2 个途径点 , 节点 4 -> 结点 1 -> 结点 2 -> 结点 3 , 距离为 10 ;


每个顶点 都有可能 缩短 另外两个 顶点 之间的距离 ;





四、邻接矩阵存储图数据



使用 邻接矩阵 存储 下图信息 ;

在这里插入图片描述

下图中 使用 二维数组 int[][] edge 存储邻接矩阵 , 二维数组 元素的值为 两个点 之间的 边 的 权重 ;

如 : edge[1][2] 是 从 结点 1 到 结点 2 之间的 边 的权重 ;


邻接矩阵 取值 :

  • 两个结点之间存在边 : 邻接矩阵 取值 就是这个 边 的权重 ;
  • 两个结点之间不存在边 : 如果 没有可达 的边 , 如 结点 2 -> 结点 1 没有直达的边 , 则距离设置为 无穷大 ;
  • 结点到其本身的距离 : 约定为 0 ;

在这里插入图片描述





五、只允许经过 1 号点中转得到任意两点之间的最短路径



在上述 邻接矩阵 int[][] edge 中 , 求 结点 i 到 结点 j 之间的 最短路径 , 并且只允许从 结点 1 进行中转 ;

结点 i 到 结点 j 的距离为 edge[i][j] ,

结点 i 到 结点 1 的距离为 edge[i][1] , 结点 1 到 结点 j 的距离为 edge[1][j] , 其 总的距离为 edge[i][1] + edge[1][j] ,

如果 edge[i][1] + edge[1][j] < edge[i][j] , 则 结点 i 到 结点 j 之间的距离缩短了 , edge[i][1] + edge[1][j] 就是其当前的 最短路径 ;


// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

更新后的 邻接矩阵 变为下图所示 :

在这里插入图片描述

原来 结点 3 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 3 -> 1 -> 2 的距离为 9 , 距离缩短了 ;

原来 结点 4 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 4 -> 1 -> 2 的距离为 7 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 之间没有边 , 距离为 12 , 现在通过 1 中转 , 4 -> 1 -> 3 的距离为 11 , 距离缩短了 ;





六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径



上一个章节中 , 已经求出 只允许经过 1 号顶点时 , 任意两点的 最短路径 ;

本章节中 , 在上一章节的基础上 , 再求 经过 2 号顶点 , 是否能 得到 任意两个 结点 , 结点 i 到 结点 j 之间的 最短路径 ;


算法代码如下 :

// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}// 只允许经过 1、2 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

在这里插入图片描述

原来 结点 1 -> 结点 3 的 距离为 6 , 现在通过 2 中转 , 1 -> 2 -> 3 的距离为 5 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 距离为 11 , 路径为 4 -> 1 -> 3 , 现在再通过 2 中转 , 4 -> 1 -> 2 -> 3 , 新的距离为 10 , 距离缩短了 ;





七、在之前的基础上-只允许经过 1、2 、…、n 号点中转得到任意两点之间的最短路径



经过所有点的遍历 , 也就是经过 1、2 、3、4 号点之后 , 得到的 邻接矩阵 中 , 所有的 任意 两个点之间的距离都是最小距离 ;

代码参考 :

// k 代表结点个数 , 经过 1 ~ n 结点中转 , 每次增加一个点
// 就将 邻接矩阵 中的 最短路径 重新计算一遍 
for(int k = 1; k < n; k++) {for(int i = 1; i < n; i++) {for(int j = 1; j < n; j++) {if(edge[i][j] > edge[i][k] + edge[k][j]) {edge[i][j] = edge[i][k] + edge[k][j];}}}	
}

执行上述算法后 , 邻接矩阵 中的元素值 , 就是对应的 任意两个点 之间的最小距离 ;





八、弗洛伊德算法总结



弗洛伊德算法 可以 计算出 图中 任意两个点 的最短路径 ;

弗洛伊德算法的 时间复杂度是 O ( n 3 ) \rm O(n^3) O(n3) , 因为其嵌套了 3 层 for 循环 ; 结点数量小于 200 , 都可以使用该算法 ;

如果 图 中 , 边的权重 有 负数 , 并且 负数 所在边 与其它的边 组成了一个环 , 则不能使用 弗洛伊德算法 处理 ;

负环示例 :

在这里插入图片描述

这篇关于【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247230

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者