基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序

本文主要是介绍基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文引用了上海财经大学崔雪婷老师最优化理论与方法课程,课程链接如下:

【最优化理论与方法-第十二讲-二次规划】 https://www.bilibili.com/video/BV1vQ4y1P77A/?p=4&share_source=copy_web&vd_source=ec4b99096a4967b6330aae8eaef5e99b

崔老师讲最优化讲的特别好!满分推荐!

逐次凸近似(Successive Convex Approximation, SCA)是一种优化算法,主要应用于求解非凸优化问题。它的基本思想是将一个非凸问题转化为包含多个凸子问题的序列,通过不断的求解凸子问题逼近原问题的最优解。

 图1 非凸函数

现考虑如下非凸二次规划问题,其函数图像如图1所示。

问题1

其中,

原问题的目标函数可以通过特征值分解转化为凸函数减去凸函数的形式,凸函数减去凸函数未必是凸函数

[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立

其中,矩阵PN都是半正定矩阵,矩阵D的表达式如下所示:

其中,\lambda _{1},\lambda _{2},...,\lambda _{k}\geq 0,\lambda _{k+1},\lambda _{k+2},...< 0

原问题的目标函数可以转化为:

对目标函数的第二项-\left [ x,y \right ]N\left [ x,y \right ]^{T}在点\left ( x^{*},y^{*} \right )处进行凸近似,即在点\left ( x^{*},y^{*} \right )处进行一阶泰勒展开:

至此,原问题可转化为:

 问题2

这样一来,就可以将原来的非凸二次规划问题转化为凸二次规划问题进行求解。

定理:若\left ( x^{*},y^{*} \right )是问题2的最优解,则\left ( x^{*},y^{*} \right )必然是问题1的KKT点(在崔老师的视频中有证明)。

因此,只要找到一个点\left ( x^{*},y^{*} \right )使得\left ( x^{*},y^{*} \right )是问题二的最优解,即可求得原问题的近似最优解。(注意:SCA不能保证得到全局最优解,但解的质量较高)

读到这里,想必各位心中都会有一个疑问:\left ( x^{*},y^{*} \right )点要这么确定呢?SCA算法就是为了找到这样一个点\left ( x^{*},y^{*} \right ),算法步骤如下所示:

1)令k=0,\varepsilon=1\times 10^{-6},取\left ( x_{k},y_{k} \right )\epsilon feasible\: \: region(初值对结果的影响较大,建议取可行域中点);

2)求解近似优化问题(即问题2),得到子问题最优解\left ( x_{k+1},y_{k+1} \right );

3)若\left \| \left ( x_{k+1},y_{k+1} \right )\\ -\, \left ( x_{k},y_{k} \right )\ \right \|\leqslant \varepsilon,输出\left ( x_{k+1},y_{k+1} \right );否则,令k=k+1,转至2)。

MATLAB程序:

clear all
close all
clcQ=[1,0.5;0.5,-1];x=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
x0=[0.5;0.5];
x_temp=x0;
while(1)f_k=(x'*P*x-2*x_temp'*N*x+x_temp'*N*x_temp);sol=solvesdp(Constraints,f_k,ops);display([sol.info,' 目标函数值:',num2str(value(x_temp'*Q*x_temp))])x_temp_before=x_temp;x_temp=value(x);if sqrt(sum((x_temp-x_temp_before).^2)/length(x_temp))<1e-10breakend
end
x_result=x_tempX = gridsamp([-1 -1;1 1], 40);
[m,~]=size(X);
YX=zeros(m,1);
for i=1:size(X,1)x=X(i,:);y=x*Q*x';YX(i)=y;
end
X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);
YX = reshape(YX, size(X1));
figure(1), mesh(X1, X2, YX)%绘制预测表面
hold on
scatter3(x_temp(1),x_temp(2),x_temp'*Q*x_temp,200,'r','pentagram','filled')

结果展示:

原问题:

clear all
close all
clcx=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
Q=[1,0.5;0.5,-1];
[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
% P-N
f=x'*Q*x;%x(1)^2-x(2)^2+x(1)*x(2)
% x'*P*x-x'*N*x
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);
sol=solvesdp(Constraints,f,ops);
x=value(x);
display([sol.info,' 目标函数值:',num2str(value(x'*Q*x))])

问题属性:对于非凸二次规划问题,gurobi会将原问题转化为MIP问题进行求解,如图2所示。本文举的例子比较简单,gurobi可以在短时间内求解成功,但对于大规模的非凸二次规划问题,使用gurobi进行求解会面临NP-Hard问题,计算负担较大,用SCA算法可以大大缩短计算时间。

图2

其他子函数:

function  S = gridsamp(range, q)
%GRIDSAMP  n-dimensional grid over given range
%
% Call:    S = gridsamp(range, q)
%
% range :  2*n matrix with lower and upper limits
% q     :  n-vector, q(j) is the number of points
%          in the j'th direction.
%          If q is a scalar, then all q(j) = q
% S     :  m*n array with points, m = prod(q)% hbn@imm.dtu.dk  
% Last update June 25, 2002[mr n] = size(range);    dr = diff(range);
if  mr ~= 2 | any(dr < 0)error('range must be an array with two rows and range(1,:) <= range(2,:)')
end 
sq = size(q);
if  min(sq) > 1 | any(q <= 0)error('q must be a vector with non-negative elements')
end
p = length(q);   
if  p == 1,  q = repmat(q,1,n); 
elseif  p ~= nerror(sprintf('length of q must be either 1 or %d',n))
end % Check for degenerate intervals
i = find(dr == 0);
if  ~isempty(i),  q(i) = 0*q(i); end% Recursive computation
if  n > 1A = gridsamp(range(:,2:end), q(2:end));  % Recursive call[m p] = size(A);   q = q(1);S = [zeros(m*q,1) repmat(A,q,1)];y = linspace(range(1,1),range(2,1), q);k = 1:m;for  i = 1 : qS(k,1) = repmat(y(i),m,1);  k = k + m;end
else    S = linspace(range(1,1),range(2,1), q).';
end

这篇关于基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222788

相关文章

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操