学习笔记:斯坦福2017季CS231n深度视觉识别课程视频(by Fei-Fei Li, Justin Johnson, Serena Yeung)最优化笔记

本文主要是介绍学习笔记:斯坦福2017季CS231n深度视觉识别课程视频(by Fei-Fei Li, Justin Johnson, Serena Yeung)最优化笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最优化(上)

简介

对于图像数据xi,如果基于参数集W做出的分类预测与真实情况比较一致,那么计算出来的损失值L就很低。现在介绍第三个,也是最后一个关键部分:最优化Optimization。最优化是寻找能使得损失函数值最小化的参数W的过程。

损失函数可视化

最优化

策略#1:随机搜索

核心思路:迭代优化。当然,我们肯定能做得更好些。核心思路是:虽然找到最优的权重W非常困难,甚至是不可能的(尤其当W中存的是整个神经网络的权重的时候),但如果问题转化为:对一个权重矩阵集W取优,使其损失值稍微减少。那么问题的难度就大大降低了。换句话说,我们的方法从一个随机的W开始,然后对其迭代取优,每次都让它的损失值变得更小一点。

我们的策略是从随机权重开始,然后迭代取优,从而获得更低的损失值。

蒙眼徒步者的比喻:一个助于理解的比喻是把你自己想象成一个蒙着眼睛的徒步者,正走在山地地形上,目标是要慢慢走到山底。在CIFAR-10的例子中,这山是30730维的(因为W是3073x10)。我们在山上踩的每一点都对应一个的损失值,该损失值可以看做该点的海拔高度。

策略#2:随机局部搜索

第一个策略可以看做是每走一步都尝试几个随机方向,如果某个方向是向山下的,就向该方向走一步。这次我们从一个随机W开始,然后生成一个随机的扰动dW ,只有当[公式]的损失值变低,我们才会更新。这个过程的具体代码如下:

W = np.random.randn(10, 3073) * 0.001 # 生成随机初始W
bestloss = float("inf")
for i in xrange(1000):step_size = 0.0001Wtry = W + np.random.randn(10, 3073) * step_size # 有随机扰动loss = L(Xtr_cols, Ytr, Wtry)if loss < bestloss:W = Wtrybestloss = lossprint 'iter %d loss is %f' % (i, bestloss)

使用同样的数据(1000),这个方法可以得到21.4%的分类准确率。这个比策略一好,但是依然过于浪费计算资源。

策略#3:跟随梯度

前两个策略中,我们是尝试在权重空间中找到一个方向,沿着该方向能降低损失函数的损失值。其实不需要随机寻找方向,因为可以直接计算出最好的方向,==这就是从数学上计算出最陡峭的方向。这个方向就是损失函数的梯度(gradient)。==在蒙眼徒步者的比喻中,这个方法就好比是感受我们脚下山体的倾斜程度,然后向着最陡峭的下降方向下山。

在一维函数中,斜率是函数在某一点的瞬时变化率。梯度是函数的斜率的一般化表达,它不是一个值,而是一个向量。在输入空间中,梯度是各个维度的斜率组成的向量(或者称为导数derivatives)。(这是我理解梯度最深的一次 。对一维函数的求导公式如下:
在这里插入图片描述
当函数有多个参数的时候,我们称导数为偏导数。而梯度就是在每个维度上偏导数所形成的向量。

最优化(下)

梯度计算

计算梯度有两种方法:一个是缓慢的近似方法(数值梯度法),但实现相对简单。另一个方法(分析梯度法)计算迅速,结果精确,但是实现时容易出错,且需要使用微分。现在对两种方法进行介绍:

使用有限差值进行数值计算

上节中的公式已经给出数值计算梯度的方法。下面代码是一个输入为函数f和向量x,计算f的梯度的通用函数,它返回函数f在点x处的梯度:

def eval_numerical_gradient(f, x):"""  一个f在x处的数值梯度法的简单实现- f是只有一个参数的函数- x是计算梯度的点""" fx = f(x) # 在原点计算函数值grad = np.zeros(x.shape)h = 0.00001# 对x中所有的索引进行迭代it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])while not it.finished:# 计算x+h处的函数值ix = it.multi_indexold_value = x[ix]x[ix] = old_value + h # 增加hfxh = f(x) # 计算f(x + h)x[ix] = old_value # 存到前一个值中 (非常重要)# 计算偏导数grad[ix] = (fxh - fx) / h # 坡度it.iternext() # 到下个维度return grad

根据上面的梯度公式,代码对所有维度进行迭代,在每个维度上产生一个很小的变化h,通过观察函数值变化,计算函数在该维度上的偏导数。最后,所有的梯度存储在变量grad中。

在梯度负方向上更新:在上面的代码中,为了计算W_new,要注意我们是向着梯度df的负方向去更新,这是因为我们希望损失函数值是降低而不是升高。

步长的影响
效率的问题

微分计算梯度

使用有限差值近似计算梯度比较简单,但缺点在于终究只是近似(因为我们对于h值是选取了一个很小的数值,但真正的梯度定义中h趋向0的极限),且耗费计算资源太多。

第二个梯度计算方法是利用微分来分析,能得到计算梯度的公式(不是近似),用公式计算梯度速度很快,唯一不好的就是实现的时候容易出错。为了解决这个问题,在实际操作时常常将分析梯度法的结果和数值梯度法的结果作比较,以此来检查其实现的正确性,这个步骤叫做梯度检查。
在这里插入图片描述

梯度下降

现在可以计算损失函数的梯度了,程序重复地计算梯度然后对参数进行更新,这一过程称为梯度下降,他的普通版本是这样的:

# 普通的梯度下降
while True:weights_grad = evaluate_gradient(loss_fun, data, weights)weights += - step_size * weights_grad # 进行梯度更新
在这里插入代码片

这个简单的循环在所有的神经网络核心库中都有。虽然也有其他实现最优化的方法(比如LBFGS),但是到目前为止,梯度下降是对神经网络的损失函数最优化中最常用的方法。

课程中,我们会在它的循环细节增加一些新的东西(比如更新的具体公式),但是核心思想不变,那就是我们一直跟着梯度走,直到结果不再变化。

小节

在这里插入图片描述
参考来源:
https://zhuanlan.zhihu.com/p/21360434?refer=intelligentunit

这篇关于学习笔记:斯坦福2017季CS231n深度视觉识别课程视频(by Fei-Fei Li, Justin Johnson, Serena Yeung)最优化笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219254

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖