使用PyTorch实现手写数字识别功能

2025-03-24 14:50

本文主要是介绍使用PyTorch实现手写数字识别功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识...

当计算机学会“看”数字

在人工智能的世界里,计算机视觉是最具魅力的领域之一。通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识别数字的全过程。本文将以通俗易懂的方式,带你走进这个看似神秘实则充满逻辑的美妙世界。

搭建开发环境

在开始训练之前,我们需要准备好三个基础要素:腾讯云HAI,腾讯云HAI,腾讯云HAI。导入必要的工具库:

import torch  # 深度学习框架核心
import torch.nn as nn  # 神经网络模块
from torchvision import datasets, transforms  # 数据处理利器

MNIST数据集解析

1. 认识手写数字数据库

MNIST数据集包含6万张训练图片和1万张测试图片,每张都是28x28像素的灰度图。这些数字由美国高中生和人口普查局员工书写,构成了计算机视觉领域的"Hello World"。

2. 数据预处理的艺术

原始图片需要经过精心处理才能被模型理解:

transform = transforms.Compose([
    transforms.ToTensor(),  # 将图像转换为数值矩阵
    transforms.Normalize((0.1307,), (0.3081,))  # 标准化处理
])

3. 可视化的重要性

通过Matplotlib展示样本图片,我们能直观感受数据的特征:

plt.imshow(images[0].squeeze(), cmap='gray')
plt.title(f'Label: {labels[0]}')

神经网络设计

1. 网络结构蓝图

我们设计一个全连接网络(FCN),其结构如同人类神经系统的简化版:

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()  # 将图片展开为向量
        self.fc1 = nn.Linear(28*28, 128)  # 第一隐藏层
        self.fc2 = nn.Linear(128, 64)    # 第二隐藏层
        self.fc3 = nn.Linear(64, 10)     # 输出层
        self.dropout = nn.Dropout(0.5)   # 正则化装置
  • 神经元数量的选择需要平衡学习能力与过拟合风险
  • Dropout层像随机关闭部分神经元,防止模型"死记硬背"

2. 信息传递机制

前向传播模拟人脑的信息处理过程:ReLU激活函数如同神经元的开关,决定是否传递信号。

def forward(self, x):
    x = self.flatten(x)  # 展平操作:将图片变为784维向量
    x = torch.relu(self.fc1(x))  # 通过第一个全连接层
    x = self.dropout(x)         # 随机屏蔽部分神经元
    x = torch.relu(self.fc2(x))  # 第二个全连接层
    return self.fc3(China编程x)          # 最终输出10个数字的概率

让模型学会思考

1. 配置学习参数

  • 损失函数:交叉熵损失(CrossEntropyLoss),衡量预测与真实的差距
  • 优化:Adam优化器,智能调节学习步伐的导航员
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

2. 训练循环解析

每个epoch都是一次完整的学习轮回:

def train(epoch):
    model.train()  # 切换至训练模式
    for BATch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()  # 清空之前的梯度
        output = model(data)    # 前向传播
        loss = criterion(output, target)  # 计算损失值
        loss.backward()         # 反向传播求梯度
        optimizer.step()        # 更新网络参数
  • 梯度清零避免不同批次数据的干扰
  • 反向传播就像纠错老师,沿着计算链修正参数

完整代码示例

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision

from torchvision import transforms
import matplotlib.pyplot as plt

# 2. 数据准备
# 定义数据预处理:转换为Tensor并标准化(MNIST的均值和标准差)
transfoChina编程rm = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 加载训练集和测试集
train_dataset = torchvision.datasets.MNIST(
    root='./data', 
    train=True,
    download=True,
    transform=transform
)

test_dataset = torchvision.datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)

# 创建数据加载器
train_loader = torch.utils.data.DataLoader(
    train_dataset,

    batch_size=64,
    shuffle=True
)

test_loader = torch.utils.data.DataLoader(
    test_dataset,
    batch_size=1000,
    shuffle=False
)

# 查看数据集信息
print(f'Train samples: {len(train_dataset)}')
print(f'Test samples: {len(test_dataset)}')

# 可视化样本
images, labels = next(iter(train_loader))
plt.imshow(images[0].squeeze(), cmap='gray')
plt.title(f'Label: {labels[0]}')
plt.show()

# 3. 定义神经网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28*28, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)
        self.dropout = nn.Dropout(0.5)
        
    def forward(self, x):
        x = self.flatten(x)
        x = torch.relu(self.fc1(x))
        x = self.dropout(x)
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = Net()
print(model)

# 4. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)


# 5. 训练模型
def train(epoch):

    model.train()
    running_loss = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        

        running_loss += loss.item()
        if batch_idx % 100 == 99:

            print(f'Epoch: {epoch+1}, Batch: {batch_idx+1}, Loss: {running_loss/100:.3f}')
            running_loss = 0.0

# 6. 测试模型

def test():
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data, target in test_loader:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    
    accuracy = 100 * correct / total
    print(f'Test Accuracy: {accuracy:.2f}%')
    return accuracy

# 7. 执行训练和测试

epochs = 5
for epoch in range(epochs):
    train(epoch)
    test()

# 8.编程 保存模型
torch.save(model.state_dict(), 'mnist_model.pth')

使用PyTorch实现手写数字识别功能

针对1-9数字的测试

# 扩展测试函数,增加按数字统计的功能

def detailed_test():
    model.eval()
    class_correct = [0] * 10  # 存储每个数字的正确计数
    class_total = [0] * 10    # 存储每个数字的总样本数
    
    with torch.no_grad():
        for images, labels in test_loader:
            outputs = model(images)
            _, predicted = torch.max(outputs, 1)
            
            # 遍历每个预测结果
            for label, prediction in zip(labels, predicted):
                class_total[label] += 1
                if label == prediction:
                    class_correct[label] += 1


    # 打印每个数字的准确率
    print("{:^10} | {:^10} | {:^10}".format("数字", "正确数", "准确率"))
    print("-"*33)

    for i in range(10):
        acc = 100 * class_correct[i] / class_total[i]
        print("{:^10} | {:^10} | {:^10.2f}%".format(i, class_correct[i], acc))
    
    # 可视化错误案例
    wrong_examples = []

    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs, 1)
        mask = predicted != labels
        wrong_examples.extend(zip(images[mask], labels[mask], predicted[mask]))
    
    # 随机展示3个错误样本

    fig, axes = plt.subplots(1, 3, figsize=(12,4))

    for ax, (img, true, pred) in zip(axes, wrong_examples[:3]):
        ax.imshow(img.squeeze(), cmap='gray')

        ax.set_title(f'True: {true}\nPred: {pred}')
        ax.axis('off')
    plt.show()

# 执行详细测试
detailed_test()

使用PyTorch实现手写数字识别功能

PyTorch vs TensorFlow 深度对比

1. 核心架构差异

特性PyTorchTensorFlow
计算图动态图(即时执行)静态图(需预先定义)
调试便利性支持标准python调试工具需要特殊工具(tfdbg)
API设计更接近Python原生语法自成体系的API风格
移动端部署支持但生态较弱通过TF Lite有成熟解决方案

2. 相同功能的代码对比

以定义全连接层为例:

# PyTorch版
import torch.nn as nn
layer = nn.Linear(in_features=784, out_features=128)

# TensorFlow版
from tensorflow.keras.layers import Dense
layer = Dense(units=128, input_dim=784)

3. 训练流程对比

PyTorch训练循环

for epoandroidch in range(epochs):
    for data, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(data)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

TensorFlow训练流程

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.fit(train_dataset, epochs=epochs)  # 自动完成训练循环

4. 性能对比(MNIST示例)

指标PyTorch(CPU)TensorFlow(CPU)
训练时间/epoch~45秒~50秒
内存占用~800MB~1GB
测试准确率97.8-98.2%97.5-98.0%

工具的本质

PyTorch与TensorFlow的差异,本质上是灵活性规范性的不同追求。就像画家选择画笔,PyTorch提供的是自由挥洒的水彩,TensorFlow则是精准可控的钢笔。理解它们的特性差异,根据项目需求选择合适的工具,才是提升开发效率的关键。无论是哪个框架,最终目标都是将数学公式转化为智能的力量。

以上就是使用PyTorch实现手写数字识别功能的详细内容,更多关于PyTorch手写数字识别的资料请关注编程javascript栈(www.chinasem.cn)其它相关文章!

这篇关于使用PyTorch实现手写数字识别功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153919

相关文章

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

SpringBoot @Scheduled Cron表达式使用方式

《SpringBoot@ScheduledCron表达式使用方式》:本文主要介绍SpringBoot@ScheduledCron表达式使用方式,具有很好的参考价值,希望对大家有所帮助,如有... 目录Cron 表达式详解1. 表达式格式‌2. 特殊字符解析3. 常用示例‌4. 重点规则5. 动态与复杂场景‌

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

java String.join()的使用小结

《javaString.join()的使用小结》String.join()是Java8引入的一个实用方法,用于将多个字符串按照指定分隔符连接成一个字符串,本文主要介绍了javaString.join... 目录1. 方法定义2. 基本用法2.1 拼接多个字符串2.2 拼接集合中的字符串3. 使用场景和示例3

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

SpringBoot3使用Jasypt实现加密配置文件

《SpringBoot3使用Jasypt实现加密配置文件》这篇文章主要为大家详细介绍了SpringBoot3如何使用Jasypt实现加密配置文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... 目录一. 使用步骤1. 添加依赖2.配置加密密码3. 加密敏感信息4. 将加密信息存储到配置文件中5