人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】

本文主要是介绍人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】

  • 一、模型误差与模型复杂度的关系
    • 1、梯度下降法
    • 2、泛化误差
      • 2.1 方差
      • 2.2 偏差
      • 2.3 噪声
      • 2.4 泛化误差的拆分
    • 3、偏差-方差窘境(bias-variance dilemma)
    • 4、Bias-Variance Tradeoff 理论意义
    • 5、K折交叉验证与Bias-Variance关系
  • 二、欠拟合&过拟合
    • 1、定义
    • 2、原因以及解决办法
      • 2.1 欠拟合、过拟合的判断
      • 2.2 欠拟合原因以及解决办法
      • 2.3 “回归算法”过拟合原因以及解决办法
  • 二、过拟合的检测
  • 三、过拟合解决方案
    • 1、提供更多的训练数据
    • 2、降低模型复杂度
      • 2.1 Shallow network
      • 2.2 Regularization/正则化/Weight Decay
        • 2.2.1 L1-norm(sklearn.linear_model.LassoCV)
        • 2.2.2 L2-norm(sklearn.linear_model.RidgeCV)
        • 2.2.3 Elastic Net(sklearn.linear_model.ElasticNetCV)
    • 3、Data Argumentation/数据增强
    • 4、Dropout
      • 4.1 在训练集Training模型
      • 4.2 在测试集Testing模型
      • 4.3 “Dropout” v.s. “Bagging”
      • 4.4 取平均的作用
      • 4.5 减少神经元之间复杂的共适应关系
      • 4.6 Dropout类比于性别生物进化中的角色
    • 5、Early Stopping
      • 5.1 目的
      • 5.2 原理
      • 5.3 为什么能减小过拟合
      • 5.4 Early Stopping的缺点

一、模型误差与模型复杂度的关系

1、梯度下降法

模型的评估与调优的目的就是让模型的损失函数尽可能地减小。所有损失函数只要可导,都可以使用梯度下降法来找到损失函数极小值处对应的参数。

在这里插入图片描述
在这里插入图片描述

2、泛化误差

泛化误差:以回归任务为例, 学习算法的平方预测误差期望为:

这篇关于人工智能:模型复杂度、模型误差、欠拟合、过拟合/泛化能力、过拟合的检测、过拟合解决方案【更多训练数据、Regularization/正则、Shallow、Dropout、Early Stopping】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128922

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编