You are given two positive integer sequences 𝑎1,…,𝑎𝑛 and 𝑏1,…,𝑏𝑚. For each 𝑗=1,…,𝑚 find the greatest common divisor of 𝑎1+𝑏𝑗,…,𝑎𝑛+𝑏𝑗. Input The first line contains two integers 𝑛 and
下面问题 原题是说,下面的等式 ∫ 0 ∞ ∏ k = 0 N ( sin t 100 k + 1 t 100 k + 1 ) d t = π 2 \int_0^\infty\prod\limits_{k=0}^{N}\left(\dfrac{\sin \dfrac{t}{100k+1}}{\dfrac{t}{100k+1}}\right)dt=\dfrac{\pi}2 ∫0∞k=0∏
1.解非线性薛定谔方程有很多递归解法,分布傅里叶算法是最准确,计算复杂度最低的解法 T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equation, II, numerical, nonlinear Schroedinger equation,” J.