摘要 无Mamba不狂欢,本文打造基于Mamba的注意力机制。全世界首发基于Mamba的注意力啊!对Mamba感兴趣的朋友一定不要错过啊! 基于Mamba的高效注意力代码和结构图 import torch import torch.nn as nn # 导入自定义的Mamba模块 from mamba_ssm import Mamba class EfficientMamba
paper:Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles official implementation:https://github.com/alanli1997/slim-neck-by-gsconv 背景 目标检测是计算机视觉中一个重要的下游
传统分割: (1)Atlas based methods, (2)Statistical shape/appearance based methods (3)Classification based methods 论文方法: 1.调整窗宽窗位为[-200,200]。(肉眼可以观察软组织器官) 2.采用MABS method方法粗定位ROIs。使用归一化互信息指导配准。配准包含
Patch-Based 3D Unet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions 总结: 普通的3D Unet通过超参数(patch size、loss、convolution)的调整,创建了五个模型(也就是使用不同超参数的五个3D Unet),将总体