YOLOv5改进(二)BiFPN替换Neck网络

2024-05-09 04:20

本文主要是介绍YOLOv5改进(二)BiFPN替换Neck网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

针对红绿灯轻量化检测,上一节使用MobileNetv3替换了主干网络,本篇将在使用BiFPN替换Neck的方式优化算法~

往期回顾

YOLOv5改进(一)MobileNetv3替换主干网络

目录

  • 一、BiFPN简介
  • 二、改进方法一
    • 第一步:在common.py中添加BiFPN模块
    • 第二步:在yolo.py中的parse_model函数加入类名
    • 第三步:制作模型配置文件
    • 第四步:验证新加入的BiFPN
    • 第五步:修改train.py中的cfg参数
    • 第六步:运行 python train.py
  • 三、改进方法二
    • 第一步:在common.py中添加BiFPN模块
    • 第二步:在yolo.py中的parse_model函数加入类名
    • 第三步:制作模型配置文件
    • 第四步:验证新加入的BiFPN
    • 第五步:修改train.py中的cfg参数
    • 第六步:运行 python train.py

一、BiFPN简介

BiFPN即“双向特征金字塔网络”,常用于目标检测和实例分割的神经网络架构。EfficientDet是以EfficientNet模型和双向特征加权金字塔网络BiFPN为基础,于2020年创新推出的新一代目标检测模型。

论文题目:《EfficientDet: Scalable and Efficient Object Detection》(《EfficientDet:可扩展且高效的目标检测》)
原文地址:EfficientDet: Scalable and Efficient Object Detection
论文提供代码地址:https://github.com/google/automl/tree/master/efficientdet
第三方提供代码地址:https://github.com/jewelc92/mmdetection/blob/3.x/projects/EfficientDet/efficientdet/bifpn.py

二、改进方法一

第一步:在common.py中添加BiFPN模块

代码如下:

# BiFPN 
# 两个特征图add操作
class BiFPN_Add2(nn.Module):def __init__(self, c1, c2):super(BiFPN_Add2, self).__init__()# 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter# 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter# 从而在参数优化的时候可以自动一起优化self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)self.epsilon = 0.0001self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)self.silu = nn.SiLU()def forward(self, x):w = self.wweight = w / (torch.sum(w, dim=0) + self.epsilon)return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))# 三个特征图add操作
class BiFPN_Add3(nn.Module):def __init__(self, c1, c2):super(BiFPN_Add3, self).__init__()self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)self.epsilon = 0.0001self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)self.silu = nn.SiLU()def forward(self, x):w = self.wweight = w / (torch.sum(w, dim=0) + self.epsilon)  # Fast normalized fusionreturn self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

效果如下:
在这里插入图片描述

第二步:在yolo.py中的parse_model函数加入类名

添加内容如下:

# 添加bifpn_add结构
elif m in [BiFPN_Add2, BiFPN_Add3]:c2 = max([ch[x] for x in f])

效果如下:
在这里插入图片描述

第三步:制作模型配置文件

复制yolov5s.yaml文件,重命名为yolov5s_BiFPN.yaml,代码如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 12  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.1 BiFPN head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, BiFPN_Add2, [256, 256]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, BiFPN_Add2, [128, 128]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 [-1, 1, Conv, [512, 3, 2]],  [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]],  #v5s通道数是默认参数的一半[-1, 3, C3, [512, False]],  # 20 [-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, BiFPN_Add2, [256, 256]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

第四步:验证新加入的BiFPN

运行yolo.py:

在这里插入图片描述
可以看到所有的Concat被换成了BiFPN_Add

第五步:修改train.py中的cfg参数

将模型配置文件修改为yolov5s_BiFPN.yaml

在这里插入图片描述

第六步:运行 python train.py

开始训练:

在这里插入图片描述
训练结束后结果保存到run/train文件夹下~

结果对比:
在这里插入图片描述

可以看到更换BiFPN之后的性能有所下降!

好了,到这里关于YOLOv5中第一种BiFPN替换Neck的改进就完成了!

三、改进方法二

第一步:在common.py中添加BiFPN模块

添加代码如下:

# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支concat操作
class BiFPN_Concat2(nn.Module):def __init__(self, dimension=1):super(BiFPN_Concat2, self).__init__()self.d = dimensionself.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)self.epsilon = 0.0001def forward(self, x):w = self.wweight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化# Fast normalized fusionx = [weight[0] * x[0], weight[1] * x[1]]return torch.cat(x, self.d)# 三个分支concat操作
class BiFPN_Concat3(nn.Module):def __init__(self, dimension=1):super(BiFPN_Concat3, self).__init__()self.d = dimension# 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter# 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter# 从而在参数优化的时候可以自动一起优化self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)self.epsilon = 0.0001def forward(self, x):w = self.wweight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化# Fast normalized fusionx = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]]return torch.cat(x, self.d)

效果如下:

在这里插入图片描述

第二步:在yolo.py中的parse_model函数加入类名

添加以下代码:

# 添加bifpn_concat结构
elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]:c2 = sum(ch[x] for x in f)

效果如下:

在这里插入图片描述

第三步:制作模型配置文件

复制yolov5s.yaml重命名为yolov5s-BiFPN1.yaml,内容如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 12  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.1 BiFPN head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, BiFPN_Concat2, [1]],  # cat backbone P4 <--- BiFPN change[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, BiFPN_Concat2, [1]],  # cat backbone P3 <--- BiFPN change[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14, 6], 1, BiFPN_Concat3, [1]],  # cat P4 <--- BiFPN change[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, BiFPN_Concat2, [1]],  # cat head P5 <--- BiFPN change[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

第四步:验证新加入的BiFPN

运行models/yolo.py

在这里插入图片描述

第五步:修改train.py中的cfg参数

跟上面步骤一样,将模型配置文件修改为yolov5s_BiFPN1.yaml

第六步:运行 python train.py

开始训练:

在这里插入图片描述

训练结束后结果保存到run/train文件夹下~

结果对比:
在这里插入图片描述

可以看到更换BiFPN之后的前30轮均有所提升,后70轮基本相平!

好了,到这里关于YOLOv5中第二种BiFPN替换Neck的改进就完成了!

这篇关于YOLOv5改进(二)BiFPN替换Neck网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972376

相关文章

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

网络学习-eNSP配置NAT

NAT实现内网和外网互通 #给路由器接口设置IP地址模拟实验环境<Huawei>system-viewEnter system view, return user view with Ctrl+Z.[Huawei]undo info-center enableInfo: Information center is disabled.[Huawei]interface gigabit