learn专题

Learn ComputeShader 09 Night version lenses

这次将要制作一个类似夜视仪的效果 第一步就是要降低图像的分辨率, 这只需要将id.xy除上一个数字然后再乘上这个数字 可以根据下图理解,很明显通过这个操作在多个像素显示了相同的颜色,并且很多像素颜色被丢失了,自然就会有降低分辨率的效果 效果: 但是这样图像太锐利了,我们加入噪声去解决这个问题 [numthreads(8, 8, 1)]void CSMain(uint3 id

机器学习-有监督学习-分类算法:最大熵模型【迭代过程计算量巨大,实际应用比较难;scikit-learn甚至都没有最大熵模型对应的类库】

最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了。 它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。 理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。 一、熵和条件熵 熵

生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器

1. 在线读取iris数据集 import osimport pandas as pd# 下载try:s = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'print('From URL:', s)df = pd.read_csv(s,header=None,encoding='utf-8'

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(仿射变换)

本系列学习笔记参考自OpenCV2.4.10之opencv\sources\samples\cpp\tutorial_code和http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文将继续学习opencv-tutorial-code中的ImgTrans,这里讲主要介绍仿射变换。仿射变换是直角坐标系的一种,描述的是一

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(图片边框与图片卷积)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文将继续介绍如何给一张图片添加边框以及如何对一张图片进行卷积。核心函数为copyMakeBorder与filter2D 1.co

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgTrans(Canny边缘检测)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html 本博文接下来将介绍图像变换相关的Demo,如下图所示: CannyDetector_Demo.cpp(Canny边缘检测)

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ImgProc(图像处理)

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html       本博文将继续学习 OpenCV2.4.10中tutorial-code下的ImgProc,还有对于涉及到的知

OpenCV2.4.10之samples_cpp_tutorial-code_learn------安装配置与第一个Opencv程序

本系列学习笔记参考自OpenCV2.4.10之 opencv\sources\samples\cpp\tutorial_code和 http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html opencv作为一个开源的二维图形库,提供了一套完整的二维图像处理等相关算法的C/C++实现。自opencv2.0版

分类学习-支持向量机(Scikit-learn)

手写体数字识别 1、手写体数据读取 from sklearn.datasets import load_digitsdigits = load_digits() #获得的手写体数据图片存储在digits变量中print(digits.data.shape) 2、数据分割 from sklearn.cross_validation import train_te

【实战教程】用scikit-learn玩转KNN:鸢尾花数据集的分类之旅

KNN(K-Nearest Neighbors)算法是一种简单直观的监督学习算法,被广泛应用于分类和回归任务中。本文将带你一步步了解如何使用Python中的scikit-learn库实现KNN算法,并通过鸢尾花数据集来进行实战演练。让我们一起探索如何用KNN算法对鸢尾花进行分类吧! 1. 准备工作 首先,我们需要安装必要的库。如果你还没有安装scikit-learn,可以通过以下命令进行安

ARTS Review4 Here’s What You Can Learn in 10 Minutes

文章链接:http://blog.thefirehoseproject.com/posts/10-minutes-learn-programming/ 这是你在10分钟内可以学到的东西 1.使用google进行查找,解决问题,google的关键字应该是基于你对于异常出现地方的代码的理解的基础上你抽取出来的,而不应该是你直接将问题进行google,比如你不能直接写我的app不能运行 2.你可以直

Scikit-learn之Cross_Validation

1. Cross Validation是用来进行交叉验证 先导入一些依赖包 from sklearn.ensemble import GradientBoostingClassifierfrom sklearn.cross_validation import cross_val_scorefrom sklearn import metricsimport numnpy as npimp

scikit-learn中常见的train test split

1. train_test_split 进行一次性划分 import numpy as npfrom sklearn.model_selection import train_test_splitX, y = np.arange(10).reshape((5, 2)), range(5)"""X: array([[0, 1],[2, 3],[4, 5],[6, 7],[8, 9]])l

【Python】处理 scikit-learn 中的 SettingWithCopyWarning

那年夏天我和你躲在 这一大片宁静的海 直到后来我们都还在 对这个世界充满期待 今年冬天你已经不在 我的心空出了一块 很高兴遇见你 让我终究明白 回忆比真实精彩                      🎵 王心凌《那年夏天宁静的海》 这不是一个错误,而是一个 SettingWithCopyWarning 警告。这个警告在你尝试修改一个从 DataFrame 的切片(子集)上创建的副本时

【Python】处理 scikit-learn 中的 FutureWarning

那年夏天我和你躲在 这一大片宁静的海 直到后来我们都还在 对这个世界充满期待 今年冬天你已经不在 我的心空出了一块 很高兴遇见你 让我终究明白 回忆比真实精彩                      🎵 王心凌《那年夏天宁静的海》 在数据科学和机器学习领域,scikit-learn 是一个非常流行的库,用于构建和评估各种机器学习模型。然而,随着版本的更新,库中的某些模块和功能可能会被

python skikit-learn库总结

1、简介 scikit-learn是一个建立在Scipy基础上的用于机器学习的python模块,而在不同的领域中已经发展出为数众多的基于Scipy的工具包,它们被统一称为Scikits,而在所有的分支版本中,scikit-learn是最有名的。它是开源的,任何人都可以免费地使用它或者进行二次发行。 scikit-learn包含众多定级机器学习算法,它主要有6大类的基本功能,分别是分类,回归,聚

Scikit-learn学习笔记(一)

Scikit-learn学习笔记(一)     这段时间在学习机器学习相关的知识,一方面要学习理论知识,另一方面还要不断的练习和实践,只有不断的实践才能真正地掌握和理解这些理论知识。在众多编程语言中,python具有独特的优势,也是机器学习领域使用最多的语言之一,因为其语法简洁、可移植性好以及快速迭代的优势,使其成为机器学习各种算法实现的最佳载体之一,scikit-learn是python版的机

Scikit-Learn支持向量机回归

Scikit-Learn支持向量机回归 1、支持向量机回归1.1、最大间隔与SVM的分类1.2、软间隔最大化1.3、支持向量机回归1.4、支持向量机回归的优缺点 2、Scikit-Learn支持向量机回归2.1、Scikit-Learn支持向量机回归API2.2、支持向量机回归初体验2.3、支持向量机回归实践(加州房价预测) 1、支持向量机回归 支持向量机(Sup

vc6.0 MFC 单文档 静态分割窗口 --learn 3

静态分割窗口 (1)       MFC Application(exe)单文档工程。不妨将工程名为Test04. (2)       添加一对话框资源,insertàresource-àdialog,选择IDD_FORMVIEW。对话框的Styles更改如下: 为新建的对话框添加类,类的名字:Ctest,类型:CFormView。 (3)       使用CSplit

【scikit-learn入门指南】:机器学习从零开始

1. 简介 scikit-learn是一款用于数据挖掘和数据分析的简单高效的工具,基于NumPy、SciPy和Matplotlib构建。它能够进行各种机器学习任务,如分类、回归和聚类。 2. 安装scikit-learn 在开始使用scikit-learn之前,需要确保已经安装了scikit-learn库。可以使用以下命令安装: pip install scikit-learn 3

基于scikit-learn的机器学习分类任务实践——集成学习

一、传统机器学习分类流程与经典思想算法简述         传统机器学习是指,利用线性代数、数理统计与优化算法等数学方式从设计获取的数据集中构建预测学习器,进而对未知数据分类或回归。其主要流程大致可分为七个部分,依次为设计获取数据特征集(特征构造和特征提取)、探索性地对数据质量分析评价、数据预处理、数据集划分、机器学习算法建模(学习器选择、特征筛选与参数调优)、任务选择(分类或回归)和精度评价与

掌握机器学习基础:Scikit-Learn(sklearn)入门指南

Scikit-Learn(sklearn)是Python中一个非常受欢迎的机器学习库,它提供了各种用于数据挖掘和数据分析的算法。以下是Scikit-Learn的入门指南,以帮助您掌握机器学习的基础知识。 1. 简介 定义:Scikit-Learn是一个基于Python的开源机器学习库,它建立在NumPy、SciPy、Pandas和Matplotlib等库之上。功能:它涵盖了几乎所有主流机器学习

sklearn(Scikit-learn)入门学习教程

sklearn(Scikit-learn)是一个功能强大的Python机器学习库,它提供了丰富的工具和方法,用于数据挖掘、数据分析和预测建模。以下是一个关于sklearn的清晰教程,涵盖了其主要特点和功能: 1. sklearn简介 定义:sklearn是Python中常用的机器学习库,它封装了多种机器学习算法,包括分类、回归、聚类、降维等。特点: 简单高效的数据挖掘和数据分析工具。允许用户在

Scikit-learn 基础教程:机器学习的初步指南

Scikit-learn 是一个用于数据挖掘和数据分析的机器学习库,建立在 NumPy、SciPy 和 matplotlib 之上。它提供了简单而高效的工具来进行数据分析和建模。本文将为您介绍 Scikit-learn 的安装方法、核心组件,以及如何应用这些组件进行一个简单的机器学习项目。 1. 安装 Scikit-learn 安装 Scikit-learn 非常简单,您可以使用 pip 进行

Scikit-learn使用步骤?使用场景?

Scikit-learn(简称sklearn)是Python中一个非常流行的机器学习库,它提供了广泛的机器学习算法和工具,用于数据分析、特征工程、模型训练、模型评估等任务。以下是一个关于sklearn的基础教程,内容将按照几个主要部分进行分点表示和归纳: 1. 简介 sklearn是什么:Scikit-learn(sklearn)是一个基于Python的开源机器学习库,建立在NumPy、Sci

Python 机器学习 基础 之 【常用机器学习库】 scikit-learn 机器学习库

Python 机器学习 基础 之 【常用机器学习库】 scikit-learn 机器学习库 目录 Python 机器学习 基础 之 【常用机器学习库】 scikit-learn 机器学习库 一、简单介绍 二、scikit-learn 基础 1、安装 scikit-learn 2、导入 scikit-learn 3、数据准备 4、数据分割 5、训练模型 5.1 线性回归 5