【scikit-learn入门指南】:机器学习从零开始

2024-06-15 23:28

本文主要是介绍【scikit-learn入门指南】:机器学习从零开始,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

scikit-learn是一款用于数据挖掘和数据分析的简单高效的工具,基于NumPy、SciPy和Matplotlib构建。它能够进行各种机器学习任务,如分类、回归和聚类。

2. 安装scikit-learn

在开始使用scikit-learn之前,需要确保已经安装了scikit-learn库。可以使用以下命令安装:

pip install scikit-learn

3. 数据预处理

数据预处理是机器学习中的一个重要步骤。在这一部分,我们将讨论如何处理缺失值、标准化数据以及编码类别变量。

缺失值处理

在实际数据集中,经常会遇到缺失值。我们可以使用scikit-learn的SimpleImputer类来填补缺失值。

import numpy as np
from sklearn.impute import SimpleImputer# 创建一个包含缺失值的数据集
data = np.array([[1, 2, np.nan], [3, np.nan, 6], [7, 8, 9]])# 使用均值填补缺失值
imputer = SimpleImputer(strategy='mean')
data_imputed = imputer.fit_transform(data)print("填补后的数据:\n", data_imputed)

结果分析:以上代码用列的均值填补了缺失值,输出的填补后数据如下:

填补后的数据:
[[1. 2. 7.5][3. 5. 6.][7. 8. 9.]]

数据标准化

不同特征的数值范围可能差异很大,为了提高模型的性能,通常需要对数据进行标准化处理。

from sklearn.preprocessing import StandardScaler# 标准化数据
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data_imputed)print("标准化后的数据:\n", data_scaled)

结果分析:数据标准化后,各特征的均值为0,标准差为1。

类别变量编码

对于分类变量,需要将其转换为数值型。可以使用OneHotEncoder来进行独热编码。

from sklearn.preprocessing import OneHotEncoder# 创建一个包含类别变量的数据集
data = np.array([['Male', 1], ['Female', 3], ['Female', 2]])# 独热编码
encoder = OneHotEncoder(sparse=False)
data_encoded = encoder.fit_transform(data)print("编码后的数据:\n", data_encoded)

结果分析:独热编码将类别变量转换为二进制特征。

4. 数据集划分

在训练模型前,需要将数据集划分为训练集和测试集。train_test_split函数可以轻松实现这一点。

from sklearn.model_selection import train_test_split# 创建一个示例数据集
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
y = np.array([0, 1, 0, 1, 0])# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)print("训练集特征:\n", X_train)
print("测试集特征:\n", X_test)

结果分析:数据集按照80%的比例划分为训练集和测试集。

5. 模型选择与训练

在这部分,我们将介绍几种常用的机器学习模型,并展示如何使用scikit-learn进行训练和预测。

线性回归

线性回归是最简单的回归模型之一。

from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("线性回归预测结果:", predictions)

结果分析:线性回归模型对测试集进行了预测,输出预测值。

逻辑回归

逻辑回归常用于二分类问题。

from sklearn.linear_model import LogisticRegression# 创建逻辑回归模型
model = LogisticRegression()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("逻辑回归预测结果:", predictions)

结果分析:逻辑回归模型对测试集进行了预测,输出预测类别。

K近邻算法

K近邻算法是一种基于实例的学习方法。

from sklearn.neighbors import KNeighborsClassifier# 创建K近邻模型
model = KNeighborsClassifier(n_neighbors=3)# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("K近邻预测结果:", predictions)

结果分析:K近邻模型对测试集进行了预测,输出预测类别。

决策树

决策树是一种常见的分类和回归方法。

from sklearn.tree import DecisionTreeClassifier# 创建决策树模型
model = DecisionTreeClassifier()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("决策树预测结果:", predictions)

结果分析:决策树模型对测试集进行了预测,输出预测类别。

6. 模型评估

在这一部分,我们将讨论如何使用交叉验证、混淆矩阵和ROC曲线来评估模型性能。

交叉验证

交叉验证可以帮助我们更稳定地评估模型性能。

from sklearn.model_selection import cross_val_score# 使用交叉验证评估模型
scores = cross_val_score(model, X, y, cv=5)print("交叉验证得分:", scores)

结果分析:交叉验证得分展示了模型在不同折中的性能。

混淆矩阵

混淆矩阵用于评估分类模型的性能。

from sklearn.metrics import confusion_matrix# 计算混淆矩阵
cm = confusion_matrix(y_test, predictions)print("混淆矩阵:\n", cm)

结果分析:混淆矩阵展示了模型的分类情况,包括正确和错误的分类数量。

ROC曲线

ROC曲线用于评估二分类模型的性能。

from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 计算ROC曲线
fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:,1])
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

结果分析:ROC曲线展示了模型在不同阈值下的性能,AUC值越接近1表示模型性能越好。

7. 结论

本教程详细介绍了如何使用scikit-learn进行数据预处理、模型训练与评估。scikit-learn提供了丰富的工具和方法,可以方便地进行机器学习任务。希望通过本教程,读者能对scikit-learn有一个全面的了解,并能够在实际项目中应用这些知识。

通过对各个模型的详细解释和代码实现,相信你已经掌握了scikit-learn的基础操作。尝试用你自己的数据集进行练习,进一步提升你的机器学习技能吧!

这篇关于【scikit-learn入门指南】:机器学习从零开始的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064881

相关文章

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

JavaScript错误处理避坑指南

《JavaScript错误处理避坑指南》JavaScript错误处理是编程过程中不可避免的部分,它涉及到识别、捕获和响应代码运行时可能出现的问题,本文将详细给大家介绍一下JavaScript错误处理的... 目录一、错误类型:三大“杀手”与应对策略1. 语法错误(SyntaxError)2. 运行时错误(R