【Python】处理 scikit-learn 中的 FutureWarning

2024-06-23 23:52

本文主要是介绍【Python】处理 scikit-learn 中的 FutureWarning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


那年夏天我和你躲在 这一大片宁静的海
直到后来我们都还在 对这个世界充满期待
今年冬天你已经不在 我的心空出了一块
很高兴遇见你 让我终究明白
回忆比真实精彩
                     🎵 王心凌《那年夏天宁静的海》


在数据科学和机器学习领域,scikit-learn 是一个非常流行的库,用于构建和评估各种机器学习模型。然而,随着版本的更新,库中的某些模块和功能可能会被弃用(deprecated),并在未来的版本中移除。最近在使用 scikit-learn 时,我们遇到了如下的 FutureWarning:

/usr/local/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes/functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API.warnings.warn(message, FutureWarning)
/usr/local/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.ensemble.bagging module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes/functions should instead be imported from sklearn.ensemble. Anything that cannot be imported from sklearn.ensemble is now part of the private API.warnings.warn(message, FutureWarning)

什么是 FutureWarning?

FutureWarning 是 Python 用来通知用户某些功能将在未来版本中被弃用的方式。虽然这些功能在当前版本中仍然可用,但开发者建议开始使用新的替代方案,以确保代码在未来版本中的兼容性。

在我们的例子中,警告告诉我们:

sklearn.neighbors.base 模块在 0.22 版本中被弃用,并将在 0.24 版本中移除。相应的类/函数应从 sklearn.neighbors 中导入。
sklearn.ensemble.bagging 模块在 0.22 版本中被弃用,并将在 0.24 版本中移除。相应的类/函数应从 sklearn.ensemble 中导入。

如何处理这些警告?

最好的处理方式是按照警告中的建议,更新代码以使用推荐的导入方式。例如:

旧的导入方式
from sklearn.neighbors.base import KNeighborsClassifier
from sklearn.ensemble.bagging import BaggingClassifier
新的导入方式
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier

通过这种方式,我们确保代码在未来的 scikit-learn 版本中依然可用,同时也提高了代码的可读性和可维护性。

示例代码修正

假设我们有一段代码需要处理空值并使用随机森林分类器进行训练,旧的代码可能如下所示:

from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
import pandas as pd# 示例数据
# df = pd.read_csv('your_data.csv')# 使用均值填充空值
imputer = SimpleImputer(strategy='mean')
X = df.drop('target', axis=1)
X_imputed = imputer.fit_transform(X)
y = df['target']# 创建和训练随机森林分类器
clf = RandomForestClassifier(class_weight={0: 0.1667, 1: 0.8333})
clf.fit(X_imputed, y)

如果我们遇到 FutureWarning,需要更新导入方式,并可以选择暂时忽略这些警告:

import warnings
warnings.filterwarnings("ignore", category=FutureWarning)from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
import pandas as pd# 示例数据
# df = pd.read_csv('your_data.csv')# 使用均值填充空值
imputer = SimpleImputer(strategy='mean')
X = df.drop('target', axis=1)
X_imputed = imputer.fit_transform(X)
y = df['target']# 创建和训练随机森林分类器
clf = RandomForestClassifier(class_weight={0: 0.1667, 1: 0.8333})
clf.fit(X_imputed, y)

总结

通过关注并处理 FutureWarning,我们可以确保代码的前瞻性和兼容性,避免未来版本更新带来的潜在问题。最好是定期检查项目中的所有警告,并根据建议进行相应的代码更新。这不仅有助于保持代码的健康状态,还能提高代码的可维护性和性能。

这篇关于【Python】处理 scikit-learn 中的 FutureWarning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088637

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-