【实战教程】用scikit-learn玩转KNN:鸢尾花数据集的分类之旅

2024-08-22 13:52

本文主要是介绍【实战教程】用scikit-learn玩转KNN:鸢尾花数据集的分类之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KNN(K-Nearest Neighbors)算法是一种简单直观的监督学习算法,被广泛应用于分类和回归任务中。本文将带你一步步了解如何使用Python中的scikit-learn库实现KNN算法,并通过鸢尾花数据集来进行实战演练。让我们一起探索如何用KNN算法对鸢尾花进行分类吧!


1. 准备工作

首先,我们需要安装必要的库。如果你还没有安装scikit-learn,可以通过以下命令进行安装:

pip install scikit-learn

接下来,我们导入所需的库:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
2. 加载数据

我们将使用经典的鸢尾花数据集。这个数据集包含了三种不同类型的鸢尾花(Setosa、Versicolor和Virginica)的测量数据,每种类型有50个样本,每个样本包含四个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。

iris = datasets.load_iris()
X = iris.data
y = iris.target
3. 数据预处理

为了让模型更好地工作,我们通常需要对数据进行标准化处理。

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
4. 划分数据集

我们将数据分为训练集和测试集,以便评估模型的性能。

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
5. 构建KNN模型

现在我们来构建一个KNN分类器。为了找到最佳的K值,我们可以尝试多个K值,并查看它们的表现。

k_values = list(range(1, 31))
accuracies = []for k in k_values:knn = KNeighborsClassifier(n_neighbors=k)knn.fit(X_train, y_train)y_pred = knn.predict(X_test)accuracies.append(accuracy_score(y_test, y_pred))
6. 选择最佳K值

我们可以绘制出不同K值下模型的准确率,以找到最佳的K值。

plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracies, marker='o')
plt.title('Accuracy vs. Number of Neighbors (K)')
plt.xlabel('Number of Neighbors (K)')
plt.ylabel('Accuracy')
plt.grid(True)
plt.show()
7. 模型评估

根据图表找到的最佳K值,我们重新训练模型并评估其性能。

best_k = k_values[np.argmax(accuracies)]
knn_best = KNeighborsClassifier(n_neighbors=best_k)
knn_best.fit(X_train, y_train)
y_pred_best = knn_best.predict(X_test)print(f"Best K value: {best_k}")
print("Classification Report:")
print(classification_report(y_test, y_pred_best))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred_best))
print("Accuracy Score:")
print(accuracy_score(y_test, y_pred_best))
8. 结论

通过本实战教程,我们不仅学会了如何使用scikit-learn库来实现KNN算法,还掌握了如何通过鸢尾花数据集进行分类任务。希望这篇教程能帮助你更好地理解和运用KNN算法!


小贴士:

  • 在选择K值时,要考虑到过拟合与欠拟合的问题。较小的K值可能会导致过拟合,而较大的K值则可能导致欠拟合。
  • 使用交叉验证可以帮助更稳健地选择K值。

如果你喜欢这篇教程,请关注我们的公众号获取更多关于机器学习的精彩内容!


希望这篇实战教程对你有所帮助!如果有任何疑问或想要了解更多细节,欢迎留言讨论。

这篇关于【实战教程】用scikit-learn玩转KNN:鸢尾花数据集的分类之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096461

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1