学习机器学习,就像学习任何新技能一样,最好的方法之一就是通过实战来巩固理论知识。鸢尾花分类项目是一个经典的入门项目,它不仅简单易懂,还能帮助我们掌握机器学习的基本步骤和方法。 鸢尾花数据集(Iris Dataset)早在1936年就由英国生物学家 Ronald A. Fisher 引入。这个数据集包含了150个鸢尾花样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)和1个目标变量
任务 iris数据集包含150条数据,从iris.txt读取,每条数据有4个属性值和一个标签(标签取值为0,1,2)。要求对这150个4维数据进行PCA,可视化展示这些数据在前两个主方向上的分布,其中不同标签的数据需用不同的颜色或形状加以区分。 算法 m个n维数据向量去中心化后(各向量的每个维度减去这个维度在所有向量上均值),按列排列构成矩阵 X n × m \mathbf{X}_{n\ti
数据集介绍 Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过 花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 用KNN分类Iris数据集 from sklearn.datasets import loa