使用BP神经网络对鸢尾花数据集分类

2024-03-21 11:50

本文主要是介绍使用BP神经网络对鸢尾花数据集分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        最近认识的一位大佬搭建的人工智能学习网站,内容通俗易懂,风趣幽默,感兴趣的可以去看看:床长人工智能教程

 废话不多说,请看正文!

使用BP神经网络对鸢尾花数据集分类

from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pdx_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
print("x_data from datasets:", x_data)
print("y_data from datasets", y_data)x_data = DataFrame(x_data, columns=['花萼长', '花萼宽', '花瓣长', '花瓣宽'])
pd.set_option('display.unicode.east_asian_width', True)  # 设置列名对齐
print(x_data)x_data['类别'] = y_data  # 新加一列,列标签‘类别’,数据为y_data
print("x_data add a column: \n", x_data)from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as pltimport os
import PySide2dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类# ____________________________训练部分:嵌套循环迭代_______________________
for epoch in range(epoch):  # 数据集级别迭代for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失lossy = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accloss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSEloss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据# 计算loss对各个参数的梯度grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数# 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_gradw1.assign_sub(lr * grads[0])  # 参数w1自更新b1.assign_sub(lr * grads[1])  # 参数b1自更新# 求出每个epoch的平均损失print("Epoch {}, loss:{}".format(epoch, loss_all / 4))train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备# ____________________________测试部分:识别准确率______________________________total_correct, total_number = 0, 0for x_test, y_test in test_db:y = tf.matmul(x_test, w1) + b1  # y为预测结果y = tf.nn.softmax(y)  # y符合概率分布pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来total_correct += int(correct)  # 将所有batch中的correct数加起来total_number += x_test.shape[0]# 总的准确率等于total_correct / total_numberacc = total_correct / total_numbertest_acc.append(acc)print("test_acc", acc)print("__________________________")# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")import graphviz
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

结果:

这篇关于使用BP神经网络对鸢尾花数据集分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832563

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud