鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析

本文主要是介绍鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、线性LDA
    • 1.鸢尾花LDA
    • 2.月亮集LDA
  • 二、K-means
    • 1.鸢尾花k-means
    • 2.月亮集k-means
  • 三、SVM
    • 1.鸢尾花svm
    • 2.月亮集svm
  • 四、SVM的优缺点
    • 优点
    • 缺点
  • 五、参考文章

一、线性LDA

1.鸢尾花LDA

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsdef LDA(X, y):#根据y等于0或1分类X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])len1 = len(X1)len2 = len(X2) mju1 = np.mean(X1, axis=0)#求中心点mju2 = np.mean(X2, axis=0)cov1 = np.dot((X1 - mju1).T, (X1 - mju1))cov2=np.dot((X2 - mju2).T, (X2 - mju2))Sw = cov1 + cov2a=mju1-mju2a=(np.array([a])).Tw=(np.dot(np.linalg.inv(Sw),a))X1_new =func(X1, w)X2_new = func(X2, w)y1_new = [1 for i in range(len1)]y2_new = [2 for i in range(len2)]return X1_new,X2_new,y1_new,y2_new
def func(x, w):return np.dot((x), w)iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # 花瓣长度与花瓣宽度  petal length, petal width
y = iris["target"]
#print(y)
setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]
#print(Sw)
x1_new, X2_new, y1_new, y2_new = LDA(X, y)
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.title("Iris_LDA")
plt.show()

在这里插入图片描述

2.月亮集LDA

def LDA(X, y):#根据y等于0或1分类X1 = np.array([X[i] for i in range(len(X)) if y[i] == 0])X2 = np.array([X[i] for i in range(len(X)) if y[i] == 1])len1 = len(X1)len2 = len(X2) mju1 = np.mean(X1, axis=0)#求中心点mju2 = np.mean(X2, axis=0)cov1 = np.dot((X1 - mju1).T, (X1 - mju1))cov2=np.dot((X2 - mju2).T, (X2 - mju2))Sw = cov1 + cov2a=mju1-mju2a=(np.array([a])).Tw=(np.dot(np.linalg.inv(Sw),a))X1_new =func(X1, w)X2_new = func(X2, w)y1_new = [1 for i in range(len1)]y2_new = [2 for i in range(len2)]
def func(x, w):return np.dot((x), w)
X, y = datasets.make_moons(n_samples=100, noise=0.15, random_state=42)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.title("moon_LDA")
plt.show()

在这里插入图片描述

二、K-means

1.鸢尾花k-means

from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans#加载数据集,是一个字典类似Java中的map
lris_df = datasets.load_iris()#挑选出前两个维度作为x轴和y轴,你也可以选择其他维度
x_axis = lris_df.data[:,0]
y_axis = lris_df.data[:,2]model = KMeans(n_clusters=2)#训练模型
model.fit(lris_df.data)#选取行标为100的那条数据,进行预测
prddicted_label= model.predict([[6.3, 3.3, 6, 2.5]])#预测全部150条数据
all_predictions = model.predict(lris_df.data)#打印出来对150条数据的聚类散点图
plt.scatter(x_axis, y_axis, c=all_predictions)
plt.title("Iris_KMeans")  
plt.show()

在这里插入图片描述

2.月亮集k-means

#基于k-means算法对月亮数据集进行分类
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
import numpy as np
X,y=make_moons(n_samples=100,shuffle=True,noise=0.15,random_state=42)
clf = KMeans(n_clusters=2)
clf.fit(X,y)
predicted = clf.predict(X)   
plt.scatter(X[:,0], X[:,1], c=predicted, marker='s',s=100,cmap=plt.cm.Paired)    
plt.title("Moon_KMeans")    
plt.show() 

在这里插入图片描述

三、SVM

1.鸢尾花svm

from sklearn.svm import SVC
from sklearn import datasetsiris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)

在这里插入图片描述

def plot_svc_decision_boundary(svm_clf, xmin, xmax):# 获取决策边界的w和bw = svm_clf.coef_[0]b = svm_clf.intercept_[0]# At the decision boundary, w0*x0 + w1*x1 + b = 0# => x1 = -w0/w1 * x0 - b/w1x0 = np.linspace(xmin, xmax, 200)# 画中间的粗线decision_boundary = -w[0]/w[1] * x0 - b/w[1]# 计算间隔margin = 1/w[1]gutter_up = decision_boundary + margingutter_down = decision_boundary - margin# 获取支持向量svs = svm_clf.support_vectors_plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')plt.plot(x0, decision_boundary, "k-", linewidth=2)plt.plot(x0, gutter_up, "k--", linewidth=2)plt.plot(x0, gutter_down, "k--", linewidth=2)
# Bad models
x0 = np.linspace(0, 5.5, 200)plt.figure(figsize=(12,2.7))plt.axis([0, 5.5, 0, 2])plt.subplot(122)
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])
plt.title("Iris_svm")
plt.show()

在这里插入图片描述

2.月亮集svm

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
polynomial_svm_clf = Pipeline([# 将源数据 映射到 3阶多项式("poly_features", PolynomialFeatures(degree=3)),# 标准化("scaler", StandardScaler()),# SVC线性分类器("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))])
polynomial_svm_clf.fit(X, y)
def plot_dataset(X, y, axes):plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")plt.axis(axes)plt.grid(True, which='both')
def plot_predictions(clf, axes):# 打表x0s = np.linspace(axes[0], axes[1], 100)x1s = np.linspace(axes[2], axes[3], 100)x0, x1 = np.meshgrid(x0s, x1s)X = np.c_[x0.ravel(), x1.ravel()]y_pred = clf.predict(X).reshape(x0.shape)y_decision = clf.decision_function(X).reshape(x0.shape)
#     print(y_pred)
#     print(y_decision)plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.title("moon_svm")
plt.show()

在这里插入图片描述

四、SVM的优缺点

优点

1、使用核函数可以向高维空间进行映射

2、使用核函数可以解决非线性的分类

3、分类思想很简单,就是将样本与决策面的间隔最大化

4、分类效果较好

缺点

1、对大规模数据训练比较困难

2、无法直接支持多分类,但是可以使用间接的方法来做

五、参考文章

https://blog.csdn.net/qq_45213986/article/details/106186415?fps=1&locationNum=2?ops_request_misc=&request_id=&biz_id=102&utm_term=python%E5%AE%9E%E7%8E%B0%E9%B8%A2%E5%B0%BE%E8%8A%B1LDA&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-106186415

https://blog.csdn.net/zrh_CSDN/article/details/80934248

这篇关于鸢尾花和月亮数据集,运用线性LDA、k-means和SVM算法进行二分类可视化分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888961

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da