生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器

2024-08-31 12:44

本文主要是介绍生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 在线读取iris数据集

import os
import pandas as pd# 下载
try:s = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'print('From URL:', s)df = pd.read_csv(s,header=None,encoding='utf-8')except HTTPError:s = 'iris.data'# 读取.data文件,不读取列名df = pd.read_csv(s,header=None, encoding='utf-8')df.tail()

2. 加载 Iris 数据集

从 scikit-learn 加载 Iris 数据集,第三列代表花瓣的长度,第四列代表花瓣的宽度。物种分类已经转换为整数标签,其中0 = Iris-Setosa,1 = Iris-Versicolor,2 = Iris-Virginia

# jupyter
%matplotlib inline
from sklearn import datasets
import numpy as npiris = datasets.load_iris()
# 提取dataframe的第3列和第4列数据
X = iris.data[:, [2, 3]]
# 分类标签
y = iris.target# 打印分类标签
print('Class labels:', np.unique(y))
# Class labels: [0 1 2]

3. 划分 Iris 数据集

将70%数据划分为 的训练集和30% 为测试集。

from sklearn.model_selection import train_test_split
# X_train, y_train为训练集数据和标签
# X_test, y_test为测试集数据和标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)# 打印各标签的数据包含的数据数量
print('Labels counts in y:', np.bincount(y))
print('Labels counts in y_train:', np.bincount(y_train))
print('Labels counts in y_test:', np.bincount(y_test))
# Labels counts in y: [50 50 50]
# Labels counts in y_train: [35 35 35]
# Labels counts in y_test: [15 15 15]

4. 标准化特征

from sklearn.preprocessing import StandardScalersc = StandardScaler()
sc.fit(X_train)
# 标准化训练数据X_train_std , X_test_std 
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

5. 通过scikit-learn训练感知器

学习速率 (learning rate): 在训练模型时用于梯度下降的一个变量。在每次迭代期间,梯度下降法都会将学习速率与梯度相乘,得出的乘积称为梯度步长,设置数据在在0-1之间

from sklearn.linear_model import Perceptron# eta0为学习率
# random_state随机生成器加权数值
ppn = Perceptron(eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)
# Perceptron(eta0=0.1, random_state=1)# 打印测试数据集分类错误数量
y_pred = ppn.predict(X_test_std)
print('Misclassified examples: %d' % (y_test != y_pred).sum())
# Misclassified examples: 1# 获取感知器准确度
from sklearn.metrics import accuracy_score
print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
# Accuracy: 0.978print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
# Accuracy: 0.978

6. 训练感知器模型

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from distutils.version import LooseVersiondef plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):# 绘图图形和颜色生成markers = ('o', 's', '^', 'v', '<')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])# 绘图x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)lab = lab.reshape(xx1.shape)plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())# 图加上分类样本for idx, cl in enumerate(np.unique(y)):plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=colors[idx],marker=markers[idx], label=f'Class {cl}', edgecolor='black')# 高亮显示测试数据集样本if test_idx:X_test, y_test = X[test_idx, :], y[test_idx]plt.scatter(X_test[:, 0],X_test[:, 1],c='none',edgecolor='black',alpha=1.0,linewidth=1,marker='o',s=100, label='Test set')        # 使用标准化数据训练一个感知器模型
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))# 绘图
plot_decision_regions(X=X_combined_std, y=y_combined,classifier=ppn, test_idx=range(105, 150))
plt.xlabel('Petal length [standardized]')
plt.ylabel('Petal width [standardized]')
plt.legend(loc='upper left')plt.tight_layout()
plt.show()

训练的感知器预测标签结果

从下图可以看出,对于class 1和class2 标签,有个别样本分类错误,无颜色的黑色圈为测试数据集样本。预测结果

机器学习文章

生信机器学习入门1 - 数据预处理与线性回归(Linear regression)预测

生信机器学习入门2 - 机器学习基本概念

这篇关于生信机器学习入门3 - Scikit-Learn训练机器学习分类感知器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123944

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: