论文:From Facial Parts Responses to Face Detection A Deep Learning Approach.pdf 实现:暂无 这篇论文发表于ICCV2015,很有借鉴意义,论文提出了一个新的概念deep convolutional network (DCN) ,在FDDB数据集上达到了目前世界领先水准,这篇论文可以与之前《Joint Cascad
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp The book is friendly but also loaded with content and precise in its directions. "I am by no means Gods
中科院王老师团队的工作,用于做微表情识别。 摘要: Toimprove the efficiency of micro-expression feature extraction,inspired by the psychological studyof attentional resource allocation for micro-expression cognit
DiffSpeaker: 使用扩散Transformer进行语音驱动的3D面部动画 code:GitHub - theEricMa/DiffSpeaker: This is the official repository for DiffSpeaker: Speech-Driven 3D Facial Animation with Diffusion Transformer paper:htt
Zheng, W., et al. (2006).Neural Networks, IEEE Transactions on 17(1): 233-238. 在每个面部图像标记34个特征点,利用Gabor变换提取特征,形成一个labeled graph(LG) vector,代表了面部图像的特征。对于每个训练的面部图像,the semantic ratings describing the ba
转载:http://www.learnopencv.com/computer-vision-for-predicting-facial-attractiveness/ Computer Vision for Predicting Facial Attractiveness JULY 27, 2015 BY AVI SINGH 13 COMMENTS Most of us have lo
转自:http://www.cnblogs.com/lanye/p/5310090.html 源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SATYA MALLICK 51 COMMENTS Facial landmark de
《Facial Landmark Detection by Deep Multi-task Learning》2014 **要解决的问题:**人脸关键点的检测 **创新点:**在人脸关键点检测的同时进行多个任务的学习,包括:性别,是否带眼镜,是否微笑和脸部的姿势。使用这些辅助的属性可以更好的帮助定位关键点。这种Multi-task learning的困难在于:不同的任务有不同的特点,不同的收敛速
人脸特征点数据集,主要包括:性别,是否带眼睛,是否微笑和脸部姿势。 Facial landmark detection of face alignment has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single
Proceedings of the IEEE上一篇微表情相关的综述,写的很详细。从心理学与计算机两个领域阐述了微表情生成的原因与相关算法,值得仔细研读。 摘要: Four main tasks in ME analysis arespecifically discussed,including ME spotting,ME recognition,ME action u
Lighteweight and Effective Facial Landmark Detection Using Adversarial Learning With Face Geometric Map Generative Network 基于几何地图生成网络的对抗式学习的光照和有效的人脸地标检测 使用对抗学习和人脸几何地图生成网络进行轻量级和有效的人脸地标检测 作者:Hong
BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversarial Network ACM MM 2018http://liusi-group.com/projects/BeautyGANfacial makeup transfer | generative adversarial network
基于图的特征提取和混合分类方法的面部表情识别 Author G. G. Lakshmi Priya e-mail:lakshmipriya.gg@vit.ac.in L. B. Krithika e-mail:krithika.lb@vit.ac.in School of Information Technology and Engineering, Vellore Institute of