本文主要是介绍facial landmark datection-数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
人脸特征点数据集,主要包括:性别,是否带眼睛,是否微笑和脸部姿势。
Facial landmark detection of face alignment has long been impeded by the problems of occlusion and pose variation. Instead of treating the detection task as a single and independent problem, we investigate the possibility of improving detection robustness through multi-task learning. Specifically, we wish to optimize facial landmark detection together with heterogeneous but subtly correlated tasks, e.g., head pose estimation and facial attribute inference. This is non-trivial since different tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, with task-wise early stopping to facilitate learning convergence. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art method based on cascaded deep model.
译:
长期以来,由于遮挡和姿态变化等问题,人脸定位中的标志点检测一直受到阻碍。我们研究了通过多任务学习提高检测鲁棒性的可能性,而不是将检测任务看作一个单独的独立问题。具体地说,我们希望将面部标志点检测与异构但微妙相关的任务(如头部姿势估计和面部属性推断)一起优化。这是非常重要的,因为不同的任务有不同的学习困难和收敛速度。为了解决这一问题,我们提出了一个新的任务约束深度模型,通过任务提前停止来促进学习收敛。与现有的基于深度遮挡模型的方法相比,该方法能显著降低复杂度。
大家可以到官网地址下载数据集,我自己也在百度网盘分享了一份。可关注本人公众号,回复“2020082801”获取下载链接。
只要自己有时间,都尽量写写文章,与大家交流分享。
本人公众号:
CSDN博客地址:https://blog.csdn.net/ispeasant
这篇关于facial landmark datection-数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!