基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测

本文主要是介绍基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法优化的长短期记忆(LSTM)神经网络用于回归预测是一种结合了进化计算和深度学习的强大方法。

1. 背景介绍

LSTM神经网络
LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),特别适用于处理和预测基于时间序列的数据。与传统的RNN不同,LSTM通过引入“记忆单元”和“门控机制”(输入门、遗忘门、输出门)来解决长时间依赖问题,使其能够记住长时间步长内的信息。
粒子群优化(PSO)
粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart在1995年提出。PSO模拟鸟群捕食的行为,每个解被看作是一个粒子,通过更新速度和位置来搜索最优解。PSO通过个体极值(pBest)和全局极值(gBest)引导粒子移动,从而在搜索空间中寻找最优解。

2. 方法概述

结合PSO和LSTM的回归预测模型主要步骤包括:
LSTM网络构建:
构建一个基本的LSTM网络结构,通常包括输入层、若干LSTM层、全连接层和输出层。
定义损失函数(如均方误差MSE)和优化器(如Adam)。
PSO算法初始化:
初始化粒子群,每个粒子代表LSTM网络的一组超参数(如学习率、隐藏层单元数、训练轮数等)。
为每个粒子随机初始化位置和速度。
粒子评估:
将每个粒子对应的超参数应用到LSTM网络中,训练网络并计算损失值(例如在验证集上的MSE)。
更新每个粒子的个体极值(pBest)和全局极值(gBest)。
粒子更新:
根据PSO的速度和位置更新公式,更新每个粒子的速度和位置
迭代优化:
重复粒子评估和更新步骤,直到满足停止条件(如达到最大迭代次数或损失函数收敛)。
最终模型训练:
使用最佳粒子(即全局最优解gBest)对应的超参数重新训练LSTM网络,并在测试集上评估性能。

3. 优点

鲁棒性:PSO可以全局搜索最优超参数,避免了传统梯度下降方法可能陷入局部最优的问题。
适应性强:PSO优化可以适应不同的数据集和模型需求,灵活性高。
精度高:通过优化超参数,可以显著提高LSTM模型的预测精度。

4. 应用场景

时间序列预测:如股票价格预测、气象数据预测、销售量预测等。
工程应用:如流量预测、设备寿命预测等。
经济金融:如市场需求预测、经济指标预测等

MATLAB实现部分源代码:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = ceil(num_size * num_samples)+1; % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);indim=size(P_train, 1);                  % 输入特征维度
outdim = 1;                                  % 最后一列为输出%%  优化算法参数设置
SearchAgents_no = 5;                   % 数量
Max_iteration = 3;                     % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)funLSTM(x,p_train,t_train,indim);%构建优化函数
[Best_score,Best_pos,Convergence_curve] = PSO(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness);%%  记录最佳参数
Best_pos(2)=round(Best_pos(2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);

训练进度:
在这里插入图片描述
预测结果:
在这里插入图片描述
模型评价指标:
在这里插入图片描述

完整代码下载:PSO-LSTM
https://mbd.pub/o/bread/ZpaVk5ls

这篇关于基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997383

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6