基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测

本文主要是介绍基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法优化的长短期记忆(LSTM)神经网络用于回归预测是一种结合了进化计算和深度学习的强大方法。

1. 背景介绍

LSTM神经网络
LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),特别适用于处理和预测基于时间序列的数据。与传统的RNN不同,LSTM通过引入“记忆单元”和“门控机制”(输入门、遗忘门、输出门)来解决长时间依赖问题,使其能够记住长时间步长内的信息。
粒子群优化(PSO)
粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart在1995年提出。PSO模拟鸟群捕食的行为,每个解被看作是一个粒子,通过更新速度和位置来搜索最优解。PSO通过个体极值(pBest)和全局极值(gBest)引导粒子移动,从而在搜索空间中寻找最优解。

2. 方法概述

结合PSO和LSTM的回归预测模型主要步骤包括:
LSTM网络构建:
构建一个基本的LSTM网络结构,通常包括输入层、若干LSTM层、全连接层和输出层。
定义损失函数(如均方误差MSE)和优化器(如Adam)。
PSO算法初始化:
初始化粒子群,每个粒子代表LSTM网络的一组超参数(如学习率、隐藏层单元数、训练轮数等)。
为每个粒子随机初始化位置和速度。
粒子评估:
将每个粒子对应的超参数应用到LSTM网络中,训练网络并计算损失值(例如在验证集上的MSE)。
更新每个粒子的个体极值(pBest)和全局极值(gBest)。
粒子更新:
根据PSO的速度和位置更新公式,更新每个粒子的速度和位置
迭代优化:
重复粒子评估和更新步骤,直到满足停止条件(如达到最大迭代次数或损失函数收敛)。
最终模型训练:
使用最佳粒子(即全局最优解gBest)对应的超参数重新训练LSTM网络,并在测试集上评估性能。

3. 优点

鲁棒性:PSO可以全局搜索最优超参数,避免了传统梯度下降方法可能陷入局部最优的问题。
适应性强:PSO优化可以适应不同的数据集和模型需求,灵活性高。
精度高:通过优化超参数,可以显著提高LSTM模型的预测精度。

4. 应用场景

时间序列预测:如股票价格预测、气象数据预测、销售量预测等。
工程应用:如流量预测、设备寿命预测等。
经济金融:如市场需求预测、经济指标预测等

MATLAB实现部分源代码:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = ceil(num_size * num_samples)+1; % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);indim=size(P_train, 1);                  % 输入特征维度
outdim = 1;                                  % 最后一列为输出%%  优化算法参数设置
SearchAgents_no = 5;                   % 数量
Max_iteration = 3;                     % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)funLSTM(x,p_train,t_train,indim);%构建优化函数
[Best_score,Best_pos,Convergence_curve] = PSO(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness);%%  记录最佳参数
Best_pos(2)=round(Best_pos(2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);

训练进度:
在这里插入图片描述
预测结果:
在这里插入图片描述
模型评价指标:
在这里插入图片描述

完整代码下载:PSO-LSTM
https://mbd.pub/o/bread/ZpaVk5ls

这篇关于基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997383

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、