长短期专题

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu

3. 循环神经网络(RNN)与长短期记忆网络(LSTM)

引言 循环神经网络(RNN)和长短期记忆网络(LSTM)是处理序列数据的关键模型,广泛应用于自然语言处理、时间序列预测、语音识别等领域。RNN通过循环结构捕捉序列中的时间依赖关系,而LSTM则通过特殊的记忆单元解决了RNN中的梯度消失问题。本篇博文将深入探讨RNN和LSTM的结构、工作原理,以及其在序列数据处理中的应用。 1. RNN的工作原理及局限性 循环神经网络(RNN)是一类用于处理序

神经网络算法--文搞懂LSTM(长短期记忆网络)

本文将从LSTM的本质、LSTM的原理、LSTM的应用 三个方面,带您一文搞懂长短期记忆网络Long Short Term Memory | LSTM。 RNN 面临问题:RNN(递归神经网络)在处理长序列时面临的主要问题:短时记忆和梯度消失/梯度爆炸。 梯度更新规则 短时记忆 问题描述:RNN在处理长序列时,由于信息的传递是通过隐藏状态进行的,随着时间的推移,较早时间步的信息

门控循环单元GRU与长短期记忆网络LSTM

门控循环单元与长短期记忆网络 门控隐状态 问题提出:对于一个序列来说不是每个观察值都是同等重要想只记住相关的观察需要: 能关注的机制(更新门)能遗忘的机制(重置门) 第一个词元的影响至关重要。 我们希望有某些机制能够在一个记忆元里存储重要的早期信息。 如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。 重置门和更新门 首先介绍重

高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测

目录 效果一览基本介绍模型设计程序设计参考资料 效果一览 基本介绍 高创新 | CEEMDAN-VMD-BiLSTM-Attention双重分解+双向长短期记忆神经网络+注意力机制多元时间序列预测 本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD 分解后,将各个分量分别通过BiLST

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现LSTM-ABKDE长短期记忆神经网络结合自适应带宽核函数密度估

JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测

JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测 目录 JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多

LSTM(长短期记忆网络)

在上篇文章一文看尽RNN(循环神经网络)中,我们对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。 Long Short Term Memory networks(以下简称

基于长短期记忆网络 LSTM 的送餐时间预测

前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。 对于送餐服务公司来说,预测订单的送达时间是一项极具挑战性的任务。像

基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测

粒子群算法优化的长短期记忆(LSTM)神经网络用于回归预测是一种结合了进化计算和深度学习的强大方法。 1. 背景介绍 LSTM神经网络 LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),特别适用于处理和预测基于时间序列的数据。与传统的RNN不同,LSTM通过引入“记忆单元”和“门控机制”(输入门、遗忘门、输出门)来解决长时间依赖问题,使其能够记住长时间

GA-CNN-LSTM多输入分类|遗传算法-卷积-长短期神经网络|Matlab

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势:  二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译,将GA(遗传算法)与CNN-LSTM(卷积神经网络-长短期记忆神经网络)结合,进行多输入数据分类预测 输入训练的数据包含12个特征,1个响应值,即通过12个输入值预测1个输出值(多变量

深度学习:基于Keras,使用长短期记忆神经网络模型LSTM和RMSProp优化算法进行销售预测分析

前言 系列专栏:【机器学习:项目实战100+】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型 预测是使用过去的值和许多其他因素来预测未来的值。在本文中,我们将使用 Keras

深度学习--Matlab使用LSTM长短期记忆网络对负荷进行预测

一、LSTM描述 长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。[概念参考:百度百科] LSTM网络结构如下图:[图片来源:OPEN-OPEN]

【跟马少平老师学AI】-【神经网络是怎么实现的】(九)长短期记忆网络

一句话归纳: 1)RNN也会存在梯度消失的问题。 2)同一句话,对于不同的任务,句中不同的词起的作用也不一样。 3)LSTM(长短期记忆)子网络: 门,让输入经过运算,得到在[0,1]区间内的输出值。元素S与门的输出进行相乘运算,便可以控制S通过的量。 4)LSTM神经网络: 遗忘门,输入是h(t-1),x(t),输出f(t)。前一个状态s

深度学习:基于Keras,使用长短期记忆人工神经网络模型(LSTM)对股票市场进行预测分析

前言 系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型 在文本中,我们将探索股市数据,特别是一些科技股(苹果、亚马逊、谷歌

LSTM-KDE的长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)

LSTM-KDE的长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab) 目录 LSTM-KDE的长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.LSTM-KDE的长短期记忆神经网络结合核密度估计多变量回归区间预测(Matlab)。 2.含点预测图、置信区间预测图

SDM模型——建模用户长短期兴趣的Match模型

1. 引言 SDM模型(Sequential Deep Matching Model)是阿里团队在2019年CIKM的一篇paper。模型属于序列召回模型,研究的是如何通过用户的历史行为序列去学习到用户的丰富兴趣。 SDM模型把用户的历史序列根据交互的时间分成了短期和长期两类,然后从短期会话和长期行为中分别采取相应的措施(短期的RNN+多头注意力机制, 长期的Att Net) 学习用户的短期兴

李沐57_长短期记忆网络LSTM——自学笔记

LSTM 1.忘记门:将值朝着0减少 2.输入门:决定不是忽略掉输入数据 3.输出门:决定是不是使用隐状态 !pip install --upgrade d2l==0.17.5 #d2l需要更新 首先加载时光机器数据集。 import torchfrom torch import nnfrom d2l import torch as d2lbatch_size, num_ste

分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测

分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测 目录 分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现CNN-LST

深度学习知识点:循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)

深度学习知识点:循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU) 前言循环神经网络(RNN)RNNs(循环神经网络)训练和传统ANN(人工神经网络)训练异同点?为什么RNN 训练的时候Loss波动很大?RNN中为什么会出现梯度消失?如何解决RNN中的梯度消失问题?CNN VS RNNKeras搭建RNN 长短期记忆网络(LSTM)LSTM结构推导,为什么比RNN好?

基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测 完整代码:基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89115078 效果

长短期记忆网络 – Long short-term memory | LSTM

目录 简单的例子理解LSTM LSTM的输入和输出信息。 隐状态和细胞状态是什么

基于长短期记忆神经网络LSTM的多步长时间序列预测

基于长短期记忆神经网络LSTM的多步长多变量时间序列预测      长短时记忆网络(LSTM)是一种能够学习和预测长序列的递归神经网络。LSTMs除了学习长序列外,还可以学习一次多步预测,这对于时间序列的预测非常有用。LSTMs的一个困难在于,它们可能难以配置,而且需要大量的准备工作才能获得适合学习的格式的数据。     在本教程中,您将了解如何使用Keras在Python中开

基于双向长短期神经网络BILSTM的线损率预测,基于gru的线损率预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的线损率预测,基于gru的线损率预测 完整代码:基于双向长短期神经网络BILSTM的线损率预测,基于gru的线损率预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89114989 效果图 结果

基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测 完整代码:基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89114990 效果