LSTM(长短期记忆网络)

2024-05-28 02:58
文章标签 网络 lstm 长短期 记忆

本文主要是介绍LSTM(长短期记忆网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上篇文章一文看尽RNN(循环神经网络)中,我们对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。

Long Short Term Memory networks(以下简称LSTMs),一种特殊的RNN网络,该网络设计出来是为了解决长依赖问题。该网络由 Hochreiter & Schmidhuber (1997)引入,并有许多人对其进行了改进和普及。他们的工作被用来解决了各种各样的问题,直到目前还被广泛应用。

1、从RNN到LSTM

在 RNN 模型里,我们讲到了 RNN 具有如下的结构,每个序列索引位置 t t t 都有一个隐藏状态 h ( t ) h^{(t)} h(t)

RNN时间线展开图

如果我们略去每层都有 o ( t ) , L ( t ) , y ( t ) o^{(t)}, L^{(t)}, y^{(t)} o(t),L(t),y(t) ,则 RNN 的模型可以简化成如下图的形式:

所有循环神经网络都具有神经网络的重复模块链的形式。 在标准的RNN中,该重复模块将具有非常简单的结构,例如单个tanh层。

**The repeating module in a standard RNN contains a single layer.**

图中可以很清晰看出在隐藏状态 h ( t ) h^{(t)} h(t) x ( t ) x^{(t)} x(t) h ( t − 1 ) h^{(t-1)} h(t1) 得到。由于 RNN 梯度消失的问题,大牛们对于序列索引位置 t t t 的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊 RNN 就是我们的 LSTM 。

LSTMs也具有这种链式结构,但是它的重复单元不同于标准RNN网络里的单元只有一个网络层,它的内部有四个网络层。由于 LSTM 有很多的变种,这里我们以最常见的 LSTM 为例讲述。LSTMs的结构如下图所示。

**The repeating module in an LSTM contains four interacting layers.**

可以看到 LSTM 的结构要比 RNN 的复杂的多,真佩服牛人们怎么想出来这样的结构,然后这样居然就可以解决 RNN 梯度消失的问题。

在解释LSTMs的详细结构时先定义一下图中各个符号的含义,符号包括下面几种:

在上图中,黄色的盒子是神经网络层,粉红色的圆圈表示点操作,如向量加法乘法,单箭头表示数据流向,箭头合并表示向量的合并(concat)操作,箭头分叉表示向量的拷贝操作。

2、LSTM核心思想

LSTMs的核心是单元状态(Cell State),用贯穿单元的水平线表示。

单元状态有点像传送带。它沿着整个链一直走,只有一些微小的线性相互作用。信息很容易在不改变的情况下流动。单元状态如下图所示。

LSTM确实有能力将信息移除或添加到单元状态,并由称为gates的结构小心地进行调节。

门是一种选择性地让信息通过的方式。它们由一个Sigmod网络层和一个点乘运算组成。

因为sigmoid层的输出是0-1的值,这代表有多少信息能够流过sigmoid层。0表示都不能通过,1表示都能通过。

一个LSTM里面包含三个门来控制单元状态。

3、一步一步理解LSTM

前面提到LSTM由三个门来控制细胞状态,这三个门分别称为忘记门、输入门和输出门。下面一个一个的来讲述。

3.1 遗忘门(forget gate)

LSTM 的第一步就是决定细胞状态需要丢弃哪些信息。这部分操作是通过一个称为遗忘门的 sigmoid 单元来处理的。它通过 h t − 1 h_{t-1} ht1 x t x_{t} xt 信息来输出一个 0-1 之间的向量,该向量里面的 0-1 值表示单元状态 C t − 1 C_{t-1} Ct1中的哪些信息保留或丢弃多少。0表示不保留,1表示都保留。遗忘门如下图所示。

forget gate

3.2 输入门(input gate)

要更新单元状态,我们需要输入门。首先,我们将先前的隐藏状态和当前输入传递给 s i g m o i d sigmoid sigmoid 函数。这决定了通过将值转换为0到1来更新哪些值。0表示不重要,1表示重要。你还将隐藏状态和当前输入传递给 t a n h tanh tanh 函数,将它们压缩到-1和1之间以帮助调节网络。然后将 t a n h tanh tanh 输出与 s i g m o i d sigmoid sigmoid 输出相乘。

input gate

3.3 单元状态(cell state)

现在我们有足够的信息来计算单元状态。首先,单元状态逐点乘以遗忘向量。如果它乘以接近0的值,则有可能在单元状态中丢弃值。然后我们从输入门获取输出并进行逐点加法,将单元状态更新为神经网络发现相关的新值。这就得到了新的单元状态。

cell state

3.4 输出门(output gate)

最后我们有输出门。输出门决定下一个隐藏状态是什么。请记住,隐藏状态包含有关先前输入的信息。隐藏状态也用于预测。首先,我们将先前的隐藏状态和当前输入传递给 s i g m o i d sigmoid sigmoid 函数。然后我们将新的单元状态传递给 t a n h tanh tanh 函数。将 t a n h tanh tanh 输出与 s i g m o i d sigmoid sigmoid 输出相乘,以决定隐藏状态应携带的信息。它的输出是隐藏状态。然后将新的单元状态和新的隐藏状态传递到下一个时间步。

output gate

遗忘门决定了哪些内容与前面的时间步相关。

输入门决定了从当前时间步添加哪些信息。

输出门决定下一个隐藏状态应该是什么。

4、LSTM变种

之前描述的LSTM结构是最为普通的。在实际的文章中LSTM的结构存在各种变式,虽然变化都不会太大,但是也值得一提。

其中一个很受欢迎的变式由Gers & Schmidhuber (2000)提出,它在LSTM的结构中加入了“peephole connections.”结构,peephole connections结构的作用是允许各个门结构能够看到细胞信息,具体如下图所示。

上图在所有的门上都增加了“peephole connections.”,但是但许多论文只为部分门添加。

还有一种变式是在忘记门与输入门之间引入一个耦合。不同于之前的LSTM结构,忘记门和输入门是独立的,这个变式是在忘记门删除历史信息的位置加入新的信息,在加入新信息的位置删除旧信息。该结构如下图所示。

一种比其他形式变化更为显著的LSTM变式是由 Cho, et al. (2014)提出的门循环单元(GRU)。它将忘记门和输入门合并成一个新的门,称为更新门。GRU还有一个门称为重置门。如下图所示

5、总结

之前也提到过RNNs取得了不错的成绩,这些成绩很多是基于LSTMs来做的,说明LSTMs适用于大部分的序列场景应用。
一般文章写法会堆一堆公式吓唬人,希望本文一步一步的拆分能有助于大家的理解。
LSTMs对于RNNs的使用是一大进步。那么现在还有个问题,是否还有更大的进步?对于很多研究者来说,但是是肯定的,那就是attention的问世。attention的思想是让RNN在每一步挑选信息的时候都能从更大的信息集里面挑选出有用信息。例如,利用RNN模型为一帧图片生成字母,它将会选择图片有用的部分来得到有用的输入,从而生成有效的输出。事实上, Xu, et al.(2015) 已经这么做了,如果你想更深入的了解attention,这会是一个不错的开始。attention方向还有一些振奋人心的研究,但还有很多东西等待探索…

6、参考链接

  • http://colah.github.io/posts/2015-08-Understanding-LSTMs/
  • https://zhuanlan.zhihu.com/p/81549798

关注公众号

这篇关于LSTM(长短期记忆网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009352

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo