LSTM(长短期记忆网络)

2024-05-28 02:58
文章标签 网络 lstm 长短期 记忆

本文主要是介绍LSTM(长短期记忆网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上篇文章一文看尽RNN(循环神经网络)中,我们对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。

Long Short Term Memory networks(以下简称LSTMs),一种特殊的RNN网络,该网络设计出来是为了解决长依赖问题。该网络由 Hochreiter & Schmidhuber (1997)引入,并有许多人对其进行了改进和普及。他们的工作被用来解决了各种各样的问题,直到目前还被广泛应用。

1、从RNN到LSTM

在 RNN 模型里,我们讲到了 RNN 具有如下的结构,每个序列索引位置 t t t 都有一个隐藏状态 h ( t ) h^{(t)} h(t)

RNN时间线展开图

如果我们略去每层都有 o ( t ) , L ( t ) , y ( t ) o^{(t)}, L^{(t)}, y^{(t)} o(t),L(t),y(t) ,则 RNN 的模型可以简化成如下图的形式:

所有循环神经网络都具有神经网络的重复模块链的形式。 在标准的RNN中,该重复模块将具有非常简单的结构,例如单个tanh层。

**The repeating module in a standard RNN contains a single layer.**

图中可以很清晰看出在隐藏状态 h ( t ) h^{(t)} h(t) x ( t ) x^{(t)} x(t) h ( t − 1 ) h^{(t-1)} h(t1) 得到。由于 RNN 梯度消失的问题,大牛们对于序列索引位置 t t t 的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊 RNN 就是我们的 LSTM 。

LSTMs也具有这种链式结构,但是它的重复单元不同于标准RNN网络里的单元只有一个网络层,它的内部有四个网络层。由于 LSTM 有很多的变种,这里我们以最常见的 LSTM 为例讲述。LSTMs的结构如下图所示。

**The repeating module in an LSTM contains four interacting layers.**

可以看到 LSTM 的结构要比 RNN 的复杂的多,真佩服牛人们怎么想出来这样的结构,然后这样居然就可以解决 RNN 梯度消失的问题。

在解释LSTMs的详细结构时先定义一下图中各个符号的含义,符号包括下面几种:

在上图中,黄色的盒子是神经网络层,粉红色的圆圈表示点操作,如向量加法乘法,单箭头表示数据流向,箭头合并表示向量的合并(concat)操作,箭头分叉表示向量的拷贝操作。

2、LSTM核心思想

LSTMs的核心是单元状态(Cell State),用贯穿单元的水平线表示。

单元状态有点像传送带。它沿着整个链一直走,只有一些微小的线性相互作用。信息很容易在不改变的情况下流动。单元状态如下图所示。

LSTM确实有能力将信息移除或添加到单元状态,并由称为gates的结构小心地进行调节。

门是一种选择性地让信息通过的方式。它们由一个Sigmod网络层和一个点乘运算组成。

因为sigmoid层的输出是0-1的值,这代表有多少信息能够流过sigmoid层。0表示都不能通过,1表示都能通过。

一个LSTM里面包含三个门来控制单元状态。

3、一步一步理解LSTM

前面提到LSTM由三个门来控制细胞状态,这三个门分别称为忘记门、输入门和输出门。下面一个一个的来讲述。

3.1 遗忘门(forget gate)

LSTM 的第一步就是决定细胞状态需要丢弃哪些信息。这部分操作是通过一个称为遗忘门的 sigmoid 单元来处理的。它通过 h t − 1 h_{t-1} ht1 x t x_{t} xt 信息来输出一个 0-1 之间的向量,该向量里面的 0-1 值表示单元状态 C t − 1 C_{t-1} Ct1中的哪些信息保留或丢弃多少。0表示不保留,1表示都保留。遗忘门如下图所示。

forget gate

3.2 输入门(input gate)

要更新单元状态,我们需要输入门。首先,我们将先前的隐藏状态和当前输入传递给 s i g m o i d sigmoid sigmoid 函数。这决定了通过将值转换为0到1来更新哪些值。0表示不重要,1表示重要。你还将隐藏状态和当前输入传递给 t a n h tanh tanh 函数,将它们压缩到-1和1之间以帮助调节网络。然后将 t a n h tanh tanh 输出与 s i g m o i d sigmoid sigmoid 输出相乘。

input gate

3.3 单元状态(cell state)

现在我们有足够的信息来计算单元状态。首先,单元状态逐点乘以遗忘向量。如果它乘以接近0的值,则有可能在单元状态中丢弃值。然后我们从输入门获取输出并进行逐点加法,将单元状态更新为神经网络发现相关的新值。这就得到了新的单元状态。

cell state

3.4 输出门(output gate)

最后我们有输出门。输出门决定下一个隐藏状态是什么。请记住,隐藏状态包含有关先前输入的信息。隐藏状态也用于预测。首先,我们将先前的隐藏状态和当前输入传递给 s i g m o i d sigmoid sigmoid 函数。然后我们将新的单元状态传递给 t a n h tanh tanh 函数。将 t a n h tanh tanh 输出与 s i g m o i d sigmoid sigmoid 输出相乘,以决定隐藏状态应携带的信息。它的输出是隐藏状态。然后将新的单元状态和新的隐藏状态传递到下一个时间步。

output gate

遗忘门决定了哪些内容与前面的时间步相关。

输入门决定了从当前时间步添加哪些信息。

输出门决定下一个隐藏状态应该是什么。

4、LSTM变种

之前描述的LSTM结构是最为普通的。在实际的文章中LSTM的结构存在各种变式,虽然变化都不会太大,但是也值得一提。

其中一个很受欢迎的变式由Gers & Schmidhuber (2000)提出,它在LSTM的结构中加入了“peephole connections.”结构,peephole connections结构的作用是允许各个门结构能够看到细胞信息,具体如下图所示。

上图在所有的门上都增加了“peephole connections.”,但是但许多论文只为部分门添加。

还有一种变式是在忘记门与输入门之间引入一个耦合。不同于之前的LSTM结构,忘记门和输入门是独立的,这个变式是在忘记门删除历史信息的位置加入新的信息,在加入新信息的位置删除旧信息。该结构如下图所示。

一种比其他形式变化更为显著的LSTM变式是由 Cho, et al. (2014)提出的门循环单元(GRU)。它将忘记门和输入门合并成一个新的门,称为更新门。GRU还有一个门称为重置门。如下图所示

5、总结

之前也提到过RNNs取得了不错的成绩,这些成绩很多是基于LSTMs来做的,说明LSTMs适用于大部分的序列场景应用。
一般文章写法会堆一堆公式吓唬人,希望本文一步一步的拆分能有助于大家的理解。
LSTMs对于RNNs的使用是一大进步。那么现在还有个问题,是否还有更大的进步?对于很多研究者来说,但是是肯定的,那就是attention的问世。attention的思想是让RNN在每一步挑选信息的时候都能从更大的信息集里面挑选出有用信息。例如,利用RNN模型为一帧图片生成字母,它将会选择图片有用的部分来得到有用的输入,从而生成有效的输出。事实上, Xu, et al.(2015) 已经这么做了,如果你想更深入的了解attention,这会是一个不错的开始。attention方向还有一些振奋人心的研究,但还有很多东西等待探索…

6、参考链接

  • http://colah.github.io/posts/2015-08-Understanding-LSTMs/
  • https://zhuanlan.zhihu.com/p/81549798

关注公众号

这篇关于LSTM(长短期记忆网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009352

相关文章

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

网络学习-eNSP配置NAT

NAT实现内网和外网互通 #给路由器接口设置IP地址模拟实验环境<Huawei>system-viewEnter system view, return user view with Ctrl+Z.[Huawei]undo info-center enableInfo: Information center is disabled.[Huawei]interface gigabit

Golang 网络爬虫框架gocolly/colly(五)

gcocolly+goquery可以非常好地抓取HTML页面中的数据,但碰到页面是由Javascript动态生成时,用goquery就显得捉襟见肘了。解决方法有很多种: 一,最笨拙但有效的方法是字符串处理,go语言string底层对应字节数组,复制任何长度的字符串的开销都很低廉,搜索性能比较高; 二,利用正则表达式,要提取的数据往往有明显的特征,所以正则表达式写起来比较简单,不必非常严谨; 三,使