基于长短期记忆网络 LSTM 的送餐时间预测

2024-05-26 23:12

本文主要是介绍基于长短期记忆网络 LSTM 的送餐时间预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

送餐时间预测

前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

对于送餐服务公司来说,预测订单的送达时间是一项极具挑战性的任务。像 Zomato 和 Swiggy 这样的食品外卖服务需要准确显示送达订单所需的时间,以保持对客户的透明度。这些公司使用机器学习算法,根据送餐员过去在相同距离上所花费的时间来预测送餐时间。因此,如果您想了解如何使用机器学习预测食品配送时间,本文就是为您准备的。本文将带你使用 Python 通过机器学习预测送餐时间。

目录

  • 1. 相关数据集
    • 1.1 导入必要库
    • 1.2 加载数据集
  • 2. 计算两个经纬度之间的距离
  • 3. 探索性分析
    • 3.1 送餐距离和送餐时间
    • 3.2 送餐时间与送餐员年龄
    • 3.3 送餐时间与送餐员评级
    • 3.4 食物类型与车辆类型
  • 4. 时间预测模型
    • 4.1 准备数据
    • 4.2 构建模型(LSTM)
    • 4.3 模型训练
    • 4.4 模型评估
  • 5. 总结

1. 相关数据集

要实时预测食品配送时间,我们需要计算餐厅与送餐地点之间的距离。在找到餐厅和送餐地点之间的距离后,我们需要找到送餐员过去在相同距离内送餐所用时间之间的关系。因此,为了完成这项任务,我们需要一个数据集,其中包含送餐员从餐厅到送餐地点的送餐时间数据。

这里提供的数据集是 Gaurav Malik 在 Kaggle 上提交的原始数据集的净化版本。
以下是数据集中的所有特征:🔗

  1. ID: 订单 ID 编号
  2. Delivery_person_ID: 送餐员的 ID 编号
  3. Delivery_person_Age: 送餐员的年龄
  4. Delivery_person_Ratings(送餐人员评分): 根据以往送餐情况对送餐员的评分
  5. Restaurant_latitude: 餐厅的纬度
  6. Restaurant_longitude: 餐厅的经度
  7. Delivery_location_latitude: 送餐地点的纬度
  8. Delivery_location_longitude: 送餐地点的经度
  9. Type_of_order: 顾客订购的餐食类型
  10. Type_of_vehicle:送餐员所乘坐车辆的类型
  11. Time_taken(min): 送餐员完成订单所需的时间

1.1 导入必要库

我将通过导入必要的 Python 库和数据集来开始送餐时间预测任务:

import numpy as np
import pandas as pd
import plotly.express as px#splitting data
from sklearn.model_selection import train_test_split# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTM

1.2 加载数据集

①使用 pandas 函数 .read_csv() 加载数据集

data = pd.read_csv("deliverytime.txt")
print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  
0                    75.912471        Snack      motorcycle                24  
1                    77.813237        Snack         scooter                33  
2                    77.688400       Drinks      motorcycle                26  
3                    77.026494       Buffet      motorcycle                21  
4                    80.289982        Snack         scooter                30  

接下来,让我们来看看每一列数据的具体信息
②使用 .info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况

data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45593 entries, 0 to 45592
Data columns (total 11 columns):#   Column                       Non-Null Count  Dtype  
---  ------                       --------------  -----  0   ID                           45593 non-null  object 1   Delivery_person_ID           45593 non-null  object 2   Delivery_person_Age          45593 non-null  int64  3   Delivery_person_Ratings      45593 non-null  float644   Restaurant_latitude          45593 non-null  float645   Restaurant_longitude         45593 non-null  float646   Delivery_location_latitude   45593 non-null  float647   Delivery_location_longitude  45593 non-null  float648   Type_of_order                45593 non-null  object 9   Type_of_vehicle              45593 non-null  object 10  Time_taken(min)              45593 non-null  int64  
dtypes: float64(5), int64(2), object(4)
memory usage: 3.8+ MB

③现在我们来看看这个数据集是否包含任何空值:

data.isnull().sum()
ID                             0
Delivery_person_ID             0
Delivery_person_Age            0
Delivery_person_Ratings        0
Restaurant_latitude            0
Restaurant_longitude           0
Delivery_location_latitude     0
Delivery_location_longitude    0
Type_of_order                  0
Type_of_vehicle                0
Time_taken(min)                0
dtype: int64

数据集没有任何空值。让我们继续!

2. 计算两个经纬度之间的距离

数据集没有任何特征可以显示餐厅和送餐地点之间的差异。我们只有餐厅和送餐地点的经纬度点。我们可以使用哈弗辛公式,根据两个地点的经纬度计算它们之间的距离。

下面是我们如何根据餐厅和外卖地点的经纬度,利用哈弗辛公式求出它们之间的距离:

# Set the earth's radius (in kilometers)
R = 6371# Convert degrees to radians
def deg_to_rad(degrees):return degrees * (np.pi/180)# Function to calculate the distance between two points using the haversine formula
def distcalculate(lat1, lon1, lat2, lon2):d_lat = deg_to_rad(lat2-lat1)d_lon = deg_to_rad(lon2-lon1)a = np.sin(d_lat/2)**2 + np.cos(deg_to_rad(lat1)) * np.cos(deg_to_rad(lat2)) * np.sin(d_lon/2)**2c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a))return R * c# Calculate the distance between each pair of points
data['distance'] = np.nanfor i in range(len(data)):data.loc[i, 'distance'] = distcalculate(data.loc[i, 'Restaurant_latitude'], data.loc[i, 'Restaurant_longitude'], data.loc[i, 'Delivery_location_latitude'], data.loc[i, 'Delivery_location_longitude'])

现在,我们已经计算出餐厅与送餐地点之间的距离。我们还在数据集中添加了一个新特征,即距离。让我们再次查看数据集:

print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  \
0                    75.912471        Snack      motorcycle                24   
1                    77.813237        Snack         scooter                33   
2                    77.688400       Drinks      motorcycle                26   
3                    77.026494       Buffet      motorcycle                21   
4                    80.289982        Snack         scooter                30   distance  
0   3.025149  
1  20.183530  
2   1.552758  
3   7.790401  
4   6.210138  

3. 探索性分析

3.1 送餐距离和送餐时间

现在,让我们探索数据,找出特征之间的关系。我先来看看送餐距离和送餐时间之间的关系:

figure = px.scatter(data_frame = data, x="distance",y="Time_taken(min)", size="Time_taken(min)", trendline="ols", title = "Relationship Between Distance and Time Taken")
figure.show()

特征关系
送餐时间与送餐距离之间存在一致的关系。也就是说,无论距离远近,大多数送餐员都能在 25-30 分钟内送达食物。

3.2 送餐时间与送餐员年龄

现在我们来看看送餐时间与送餐员年龄之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Age",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Age")
figure.show()

特征关系
送餐时间与送餐员的年龄呈线性关系。这意味着年轻的送餐员比年长的送餐员用时更短。

3.3 送餐时间与送餐员评级

现在让我们来看看送餐时间与送餐员评级之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Ratings",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Ratings")
figure.show()

特征关系
送餐时间与送餐员的评分之间存在反向线性关系。也就是说,与评分低的送餐员相比,评分高的送餐员送餐时间更短。

3.4 食物类型与车辆类型

现在我们来看看顾客订购的食物类型和送餐员使用的车辆类型是否会影响送餐时间:

fig = px.box(data, x="Type_of_vehicle",y="Time_taken(min)", color="Type_of_order")
fig.show()

特征描述
因此,送餐员所花费的时间并不会因为他们所驾驶的车辆和所运送的食品类型而有太大差异。

因此,根据我们的分析,对送餐时间影响最大的特征是:

  • 送餐员的年龄
  • 送餐员的评级
  • 餐厅与送餐地点之间的距离

4. 时间预测模型

4.1 准备数据

将数据拆分为训练集和测试集

#splitting data
from sklearn.model_selection import train_test_split
x = np.array(data[["Delivery_person_Age", "Delivery_person_Ratings", "distance"]])
y = np.array(data[["Time_taken(min)"]])
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.10, random_state=42)

4.2 构建模型(LSTM)

现在,让我们使用 LSTM 神经网络模型来训练一个机器学习模型,以完成送餐时间预测任务:

# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTMmodel = Sequential([Input(shape=(xtrain.shape[1], 1)),LSTM(128, return_sequences=True),LSTM(64, return_sequences=False),Dense(25),Dense(1)
])model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ lstm (LSTM)(None, 3, 128)66,560 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ lstm_1 (LSTM)(None, 64)49,408 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)(None, 25)1,625 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)(None, 1)26 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 117,619 (459.45 KB)Trainable params: 117,619 (459.45 KB)Non-trainable params: 0 (0.00 B)

4.3 模型训练

model.fit(xtrain, ytrain, batch_size=1, epochs=9)
Epoch 1/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 65s 2ms/step - loss: 78.0635
Epoch 2/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 65.2568
Epoch 3/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 61.7881
Epoch 4/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 60.5413
Epoch 5/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 60.2824
Epoch 6/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.3861
Epoch 7/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.8831
Epoch 8/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.0806
Epoch 9/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.7611

4.4 模型评估

现在,让我们通过输入来预测送餐时间,从而测试模型的性能:

print("Food Delivery Time Prediction")
a = int(input("Age of Delivery Partner: "))
b = float(input("Ratings of Previous Deliveries: "))
c = int(input("Total Distance: "))features = np.array([[a, b, c]])
print("Predicted Delivery Time in Minutes = ", model.predict(features))
Food Delivery Time Prediction
Age of Delivery Partner:  29
Ratings of Previous Deliveries:  2.9
Total Distance:  6
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 155ms/step
Predicted Delivery Time in Minutes =  [[35.726112]]

5. 总结

要实时预测食品配送时间,需要计算食品准备点与食品消费点之间的距离。在找到餐厅和送餐地点之间的距离后,您需要找到送餐员过去在相同距离内的送餐时间之间的关系。希望您喜欢这篇关于使用 Python 进行机器学习预测送餐时间的文章。

这篇关于基于长短期记忆网络 LSTM 的送餐时间预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005849

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了