门控循环单元GRU与长短期记忆网络LSTM

2024-06-16 03:36

本文主要是介绍门控循环单元GRU与长短期记忆网络LSTM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

门控循环单元与长短期记忆网络

门控隐状态

问题提出:对于一个序列来说不是每个观察值都是同等重要想只记住相关的观察需要:

  • 能关注的机制(更新门)
  • 能遗忘的机制(重置门)

第一个词元的影响至关重要。 我们希望有某些机制能够在一个记忆元里存储重要的早期信息。 如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。

在这里插入图片描述

重置门和更新门

首先介绍重置门(reset gate)和更新门(update gate)。 我们把它们设计成(0,1)区间中的向量, 这样我们就可以进行凸组合。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。

在这里插入图片描述
首先引出重置门与更新门的计算步骤:
R t = σ ( X t W x r + H t − 1 W h r + b r ) Z t = σ ( X t W x z + H t − 1 W h z + b z ) \begin{aligned} \mathbf{R}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x r}+\mathbf{H}_{t-1} \mathbf{W}_{h r}+\mathbf{b}_{r}\right) \\ \mathbf{Z}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x z}+\mathbf{H}_{t-1} \mathbf{W}_{h z}+\mathbf{b}_{z}\right) \end{aligned} RtZt=σ(XtWxr+Ht1Whr+br)=σ(XtWxz+Ht1Whz+bz)

候选隐状态

让我们将重置门Rt 与
H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \mathbf{H}_{t}=\phi\left(\mathbf{X}_{t} \mathbf{W}_{x h}+\mathbf{H}_{t-1} \mathbf{W}_{h h}+\mathbf{b}_{h}\right) . Ht=ϕ(XtWxh+Ht1Whh+bh).
中的常规隐状态更新机制集成, 得到在时间步t的候选隐状态(candidate hidden state)

H ~ t = tanh ⁡ ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) , \tilde{\mathbf{H}}_{t}=\tanh \left(\mathbf{X}_{t} \mathbf{W}_{x h}+\left(\mathbf{R}_{t} \odot \mathbf{H}_{t-1}\right) \mathbf{W}_{h h}+\mathbf{b}_{h}\right), H~t=tanh(XtWxh+(RtHt1)Whh+bh),

我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间(-1,1)中。

在这里插入图片描述
之后说明候选隐状态的分析:

每当重置门Rt中的项接近1时, 我们恢复了普通的循环神经网络。 对于重置门Rt中所有接近0的项, 候选隐状态是以Xt作为输入的多层感知机的结果。 因此,任何预先存在的隐状态都会被重置为默认值。

注意其中引入的sigmoid函数信息

隐状态

上述的计算结果只是候选隐状态,我们仍然需要结合更新门Zt的效果。 这一步确定新的隐状态Ht。

在多大程度上来自旧的状态Ht-1和 新的候选状态Ht~ 。 更新门Zt仅需要在 Ht-1和Ht~ 之间进行按元素的凸组合就可以实现这个目标。 这就得出了门控循环单元的最终更新公式:

H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H ~ t . \mathbf{H}_{t}=\mathbf{Z}_{t} \odot \mathbf{H}_{t-1}+\left(1-\mathbf{Z}_{t}\right) \odot \tilde{\mathbf{H}}_{t} . Ht=ZtHt1+(1Zt)H~t.

每当更新门Zt接近1时,模型就倾向只保留旧状态。 此时,来自
的Xt信息基本上被忽略, 从而有效地跳过了依赖。 相反,当
Zt接近0时, 新的隐状态就会接近候选隐状态Ht~

在这里插入图片描述

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

GRU的简单实现

import torch
from torch import nn
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
#%%
def get_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xz, W_hz, b_z = three()  # 更新门参数W_xr, W_hr, b_r = three()  # 重置门参数W_xh, W_hh, b_h = three()  # 候选隐状态参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return params
def init_gru_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )
#%%
def gru(inputs, state, params):W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []for X in inputs:Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)H = Z * H + (1 - Z) * H_tildaY = H @ W_hq + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)

进行模型的训练

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

长短期记忆网络

长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题。 解决这一问题的最早方法之一是长短期存储器(long short-term memory,LSTM)

门控记忆元

长短期记忆网络引入了记忆元(memory cell),或简称为单元(cell)。 有些文献认为记忆元是隐状态的一种特殊类型, 它们与隐状态具有相同的形状,其设计目的是用于记录附加的信息。 为了控制记忆元,我们需要许多门。 其中一个门用来从单元中输出条目,我们将其称为输出门(output gate)。 另外一个门用来决定何时将数据读入单元,我们将其称为输入门(input gate)。 我们还需要一种机制来重置单元的内容,由遗忘门(forget gate)来管理, 这种设计的动机与门控循环单元相同,

  • 输出门
  • 输入门
  • 遗忘门

输入门、遗忘门和输出门

在这里插入图片描述
I t = σ ( X t W x i + H t − 1 W h i + b i ) F t = σ ( X t W x f + H t − 1 W h f + b f ) , O t = σ ( X t W x o + H t − 1 W h o + b o ) \begin{aligned} \mathbf{I}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x i}+\mathbf{H}_{t-1} \mathbf{W}_{h i}+\mathbf{b}_{i}\right) \\ \mathbf{F}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x f}+\mathbf{H}_{t-1} \mathbf{W}_{h f}+\mathbf{b}_{f}\right), \\ \mathbf{O}_{t} & =\sigma\left(\mathbf{X}_{t} \mathbf{W}_{x o}+\mathbf{H}_{t-1} \mathbf{W}_{h o}+\mathbf{b}_{o}\right) \end{aligned} ItFtOt=σ(XtWxi+Ht1Whi+bi)=σ(XtWxf+Ht1Whf+bf),=σ(XtWxo+Ht1Who+bo)

候选记忆元

由于还没有指定各种门的操作,所以先介绍候选记忆元(candidate memory cell) 。 它的计算与上面描述的三个门的计算类似, 但是使用tanh函数作为激活函数,函数的值范围为(-1,1)下面导出在时间步t处的方程:

C ~ t = tanh ⁡ ( X t W x c + H t − 1 W h c + b c ) \tilde{\mathbf{C}}_{t}=\tanh \left(\mathbf{X}_{t} \mathbf{W}_{x c}+\mathbf{H}_{t-1} \mathbf{W}_{h c}+\mathbf{b}_{c}\right) C~t=tanh(XtWxc+Ht1Whc+bc)

在这里插入图片描述

记忆元

在门控循环单元中,有一种机制来控制输入和遗忘(或跳过)。类似地,在长短期记忆网络中,也有两个门用于这样的目的:输入门It控制采用多少来自Ct的新数据,而遗忘门Ft控制保留多少过去的记忆元Ct-1∈ Rn×h的内容。使用按元素乘法,得出

C t = F t ⊙ C t − 1 + I t ⊙ C ~ t . \mathbf{C}_{t}=\mathbf{F}_{t} \odot \mathbf{C}_{t-1}+\mathbf{I}_{t} \odot \tilde{\mathbf{C}}_{t} . Ct=FtCt1+ItC~t.

在这里插入图片描述
如果遗忘门始终为1且输入门始终为0,则过去的记忆元Ct-1将随时间被保存并传递到当前时间步。引入这种设计是为了缓解梯度消失问题,并更好地捕获序列中的长距离依赖关系。

隐状态

H t = O t ⊙ tanh ⁡ ( C t ) . \mathbf{H}_{t}=\mathbf{O}_{t} \odot \tanh \left(\mathbf{C}_{t}\right) . Ht=Ottanh(Ct).

最后将输出门中的信息与记忆元中经过激活函数得到的信息进行运算就可以得到最后输出的隐状态。

只要输出门接近1,我们就能够有效地将所有记忆信息传递给预测部分, 而对于输出门接近0,我们只保留记忆元内的所有信息,而不需要更新隐状态。在这里插入图片描述

LSTM简单实现

import torch
from torch import nn
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

初始化模型的参数

def get_lstm_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xi, W_hi, b_i = three()  # 输入门参数W_xf, W_hf, b_f = three()  # 遗忘门参数W_xo, W_ho, b_o = three()  # 输出门参数W_xc, W_hc, b_c = three()  # 候选记忆元参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,b_c, W_hq, b_q]for param in params:param.requires_grad_(True)return params

搭建网络结构

def init_lstm_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device),torch.zeros((batch_size, num_hiddens), device=device))

实际模型的定义与我们前面讨论的一样: 提供三个门和一个额外的记忆元。 请注意,只有隐状态才会传递到输出层, 而记忆元不直接参与输出计算。

def lstm(inputs, state, params):[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,W_hq, b_q] = params(H, C) = stateoutputs = []for X in inputs:I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)C = F * C + I * C_tildaH = O * torch.tanh(C)Y = (H @ W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H, C)

训练预测得到最后的结果:

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

在这里插入图片描述

这篇关于门控循环单元GRU与长短期记忆网络LSTM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065369

相关文章

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

C语言 while循环1

在C语言里有3种循环:while循环    do  while 循环    for循环 while语句 //while语法结构while(表达式)循环语句; 比如在屏幕上打印1-10 在while循环中 break用于永久的终止循环 在while循环中,continue的作用是跳过本次循环 continue后边的代码,直接去判断部分,看是否进行下一次循环 //getcha

使用 GoPhish 和 DigitalOcean 进行网络钓鱼

配置环境 数字海洋VPS 我创建的丢弃物被分配了一个 IP 地址68.183.113.176 让我们登录VPS并安装邮件传递代理: ssh root@68.183.113.176apt-get install postfix 后缀配置中的点变量到我们在 DigitalOcean 中分配的 IP:mynetworks nano /etc/postfix/main.cf

Linux网络编程之循环服务器

1.介绍 Linux网络循环服务器是指逐个处理客户端的连接,处理完一个连接后再处理下一个连接,是一个串行处理的方式,比较适合时间服务器,DHCP服务器.对于TCP服务器来说,主要阻塞在accept函数,等待客户端的连接。而对于UDP服务器来说,主要阻塞在recv函数. 2.循环服务器模型 TCP循环服务器: 算法如下:          socket(...);

Linux网络编程之简单并发服务器

1.概念 与前面介绍的循环服务器不同,并发服务器对服务请求并发处理。而循环服务器只能够一个一个的处理客户端的请求,显然效率很低. 并发服务器通过建立多个子进程来实现对请求的并发处理,但是由于不清楚请求客户端的数目,因此很难确定子进程的数目。因此可以动态增加子进程与事先分配的子进程相结合的方法来实现并发服务器。 2. 算法流程 (1)TCP简单并发服务器:     服务器子进程1:

Android 扇形网络控件 - 无网络视图(动画)

前言 一般在APP没有网络的情况下,我们都会用一个无网络的提示图标,在提示方面为了统一app的情况,我们一般使用简单的提示图标,偶尔只需要改变一下图标的颜色就一举两得,而不需要让PS来换一次颜色。当然app有图标特殊要求的就另当别论了。 效果图 当你第一眼看到这样的图,二话不说直接让UI给你切一张图标来的快对吧,我其实开始也是这么想的,但是到了做的app越来越多的时候,你就会发现就算是用