深度学习--Matlab使用LSTM长短期记忆网络对负荷进行预测

本文主要是介绍深度学习--Matlab使用LSTM长短期记忆网络对负荷进行预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LSTM描述

长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。[概念参考:百度百科]

LSTM网络结构如下图:[图片来源:OPEN-OPEN]

单个LSTM主要包括以下四个步骤。

(1)遗忘门

(2)更新输入信息

(3)更新网络状态

(4)网络输出信息

更详细的分析,此处不再描述,本文着重实现和解决问题。

二、问题描述

已有一个月的电力负荷数据,该负荷数据为每15分钟一个数据点,要求通过对该数据进行学习,对未来的负荷数据进行预测。

采用单向LSTM长短期记忆网络进行深度学习,采用MATLAB平台实现。

三、MATLAB实现

3.1 加载原始数据

原始数据需要构建为行向量,即时间序列值。

%%
%加载数据,重构为行向量
datayears = load('RPD_data.mat');
datayears = datayears.Prpd;
data = datayears(length(datayears)-96*(31):end);
data = data';%很多人问我这个datayears是什么,这里解释一下,以上代码是加载数据
%把你的负荷数据赋值给data变量就可以了。
%data是行向量。要是还不明白,就留言吧。figure
plot(data)
xlabel("Days")
ylabel("Loads")
title("Daily load")

运行结果如下:

3.2 数据预处理

%%
%序列的前 90% 用于训练,后 10% 用于测试
numTimeStepsTrain = floor(0.9*numel(data));
dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);%数据预处理,将训练数据标准化为具有零均值和单位方差。
mu = mean(dataTrain);
sig = std(dataTrain);
dataTrainStandardized = (dataTrain - mu) / sig;%输入LSTM的时间序列交替一个时间步
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);

3.3 创建LSTM网络

%%
%创建LSTM回归网络,指定LSTM层的隐含单元个数96*3
%序列预测,因此,输入一维,输出一维
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 96*3;layers = [ ...sequenceInputLayer(numFeatures)lstmLayer(numHiddenUnits)fullyConnectedLayer(numResponses)regressionLayer];%指定训练选项,求解器设置为adam, 250 轮训练。
%梯度阈值设置为 1。指定初始学习率 0.005,在 125 轮训练后通过乘以因子 0.2 来降低学习率。
options = trainingOptions('adam', ...'MaxEpochs',250, ...'GradientThreshold',1, ...'InitialLearnRate',0.005, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',125, ...'LearnRateDropFactor',0.2, ...'Verbose',0, ...'Plots','training-progress');
%训练LSTM
net = trainNetwork(XTrain,YTrain,layers,options);

3.4 预测数据

!!!!这里补充一下很多人说没有看到的XTest YTest:

dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
YTest = dataTest(2:end);

这里采用上一时刻的观测值来预测下一时刻的预测值。

net = resetState(net);
net = predictAndUpdateState(net,XTrain);YPred = [];
numTimeStepsTest = numel(XTest);
for i = 1:numTimeStepsTest[net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');
end%使用先前计算的参数对预测去标准化。
YPred = sig*YPred + mu;%计算均方根误差 (RMSE)。
rmse = sqrt(mean((YPred-YTest).^2))

3.5 查看预测结果

%将预测值与测试数据进行比较。
figure
subplot(2,1,1)
plot(YTest)
hold on
plot(YPred,'.-')
hold off
legend(["Observed" "Predicted"])
ylabel("Loads")
title("Forecast with Updates")subplot(2,1,2)
stem(YPred - YTest)
xlabel("Days")
ylabel("Error")
title("RMSE = " + rmse)figure
subplot(2,1,1)
plot(dataTrain(1:end-1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain+numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred],'.-')
hold off
xlabel("Days")
ylabel("Loads")
title("Forecast")
legend(["Observed" "Forecast"])
subplot(2,1,2)
plot(data)
xlabel("Days")
ylabel("Loads")
title("Daily load")

可以看到预测效果非常的好。

其他:

看不懂博文,源代码下载链接:https://x-x.fun/e/YD188aba3boPa

深度学习--Matlab使用LSTM长短期记忆网络对负荷进行分类

这篇关于深度学习--Matlab使用LSTM长短期记忆网络对负荷进行预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960057

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学