本文主要是介绍分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测
目录
- 分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。图很多,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数、F_measure。等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2021及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据资源处下载:Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测。
%% 建立模型
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层lstmLayer(best_hd, "Name", "lstm", "OutputMode","last") % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc") % 全连接层softmaxLayer("Name", "softmax") % softmax激活层classificationLayer("Name", "classification")]; % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
这篇关于分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!