强化学习-MAPPO算法解析与实践-Multi Agent Proximal Policy Optimization

本文主要是介绍强化学习-MAPPO算法解析与实践-Multi Agent Proximal Policy Optimization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 算法简介

        mappo 是一种将ppo算法扩展到多智能体情况的算法,在讨论过这种算法的论文中,比较有名和权威的是Nips2021上发表的《The Surprising Effectiveness of PPO in Cooperative》。比较遗憾的是,可能作者出于自己不是最早提出mappo算法的人的原因,论文中并没有将mappo算法的具体实现作详细介绍(而最早提出mappo的论文又没有附上代码),我们只能根据其提供的代码和论文中粗略的描述来进行学习。

1. 网络结构

        和单智能体ppo算法一样,mappo算法中每个智能体都有各自的actor 网络和 critic网络(如果所有智能体的状态空间和动作空间也相同,即同构,也可以所有智能体共享一套actor和critic网络)。与单智能体ppo不同的是,mappo的critic网络可以接收有关全局状态的信息,这个全局状态可以是由所有智能体的观察拼接而成,也可以是环境直接提供。

2.损失函数

        和单智能体ppo算法一样,损失函数由acrot loss和critic loss组成

        actor loss 为 最小化负的代理在当前策略下的预期累积奖励 -E[ \frac{\pi(a|S_t;\theta) }{\pi(a|S_t;\theta_k)} A_t]

        critic loss 为 回报和状态价值函数的均方差  [(G_t-V(s,w))]^{2}

3.采样和更新方式

关于采样和更新,论文中没有介绍细节,本段从代码中总结。

3.1采样

        如智能体间不共享参数,即每个智能体有各自的actor和critic网络,则给每个智能体建立一个replaybuffer,将该智能体交互中获得的 st,at,r,st+1 存入对应的replaybuffer中。另在replaybuffer中增加mask 组,记录每一时刻智能体是否存活,以便后续死亡的智能体后续数据不用于更新网络。一般情况下不同智能体间不共享奖励。

        每个智能体决策时,可以不把其他智能体的动作加入观察,可以正常收敛。

                                                  图一:env_runner.py中采样过程

3.2更新

         如智能体间不共享参数,则针对每一个智能体分别从replaybuffer中抽样,训练其网络,其更新函数与ppo更新函数整体一致,出了增加了GAE、value normlization等trick

                                                图二:base_runner.py中采样过程 

4.必要的trick

4.1 GAE和Value Normalization

        论文中虽未对网络做出具体介绍,但是使用的trick给了很多笔墨。GAE和Value Normalization就是其中之二,也是最通用的两个trick。GAE是对价值函数的一种平衡方法,价值函数V的评估方法中,一步TD的方差小,偏差大,而蒙特卡洛法的偏差小,方差大,为了结合两种算法,GAE(generalized advantage estimator)是对优势函数A的估计,它用从TD(0) 到TD(n)的加权和表示V,进而估计优势函数A,TD(0) 到TD(n)权重之和是一, n代表改慕结束的步数。【有点像离线 λ 回报算法思想】

        Value Normalization是在训练时对critic网络输出的V值归一化,即减去均值除以方差,作者认为这样使得训练更加稳定。但是在计算GAE时又对归一化的V反归一化恢复了原值。

                                                图三:MAPPO论文中关于Value Normalization 

                                                图四:GAE公式来自CSDN@星之所望  

4.2其他trick

        论文中还包括其他trick,通用性和重要度不如4.1,不再详细展开分别为:

        建议1:When available, include both local, agent-specific features and global features in the value function input. Also check that these features do not unnecessarily increase the input dimension.

        建议2:Use at most 10 training epochs on difficult environments and 15 training epochs on easy environments. Additionally, avoid splitting data into mini-batches

        建议3:For the best PPO performance, maintain a clipping ratio ϵ under 0.2; within this range, tune ϵ as a trade-off between training stability and fast convergence

        建议4:Utilize a large batch size to achieve best task performance with MAPPO. Then, tune the batch size to optimize for sample-efficiency.

二 算法实践

1.环境介绍

        使用ma_gym 环境中的combat环境进行实践,该环境可从github下载

        ma-gym 库中的 Combat 环境。Combat 是一个在二维的格子世界上进行的两个队伍的对战模拟游戏,每个智能体的动作集合为:向四周移动格,攻击指定敌方智能体(因而动作空间随敌方智能体增多增多,动作空间维数=4+n+1,4代表上下左右移动,n代表攻击敌方n号智能体),或者不采取任何行动。起初每个智能体有 3 点生命值,如果智能体在敌人的攻击范围内被攻击到了,则会扣 1 生命值,生命值掉为 0 则死亡,最后存活的队伍获胜。每个智能体的攻击有一轮的冷却时间。

        本次实验旨在验证多智能体ppo,所以设置双方智能体为4.

2.实验代码

        mappo训练代码选用github上 light-mappo 项目代码这是一个轻量化的mappo算法

        下载代码后将ma_env放进项目根目录下,修改env_core.py代码如下

import timeimport numpy as npfrom ma_gym.envs.combat.combat import Combat
class EnvCore(object):"""# 环境中的智能体"""def __init__(self):self.agent_num = 4  # 设置智能体(小飞机)的个数,这里设置为两个 # set the number of agents(aircrafts), here set to twoteam_size = self.agent_numgrid_size = (15, 15)self.env = Combat(grid_shape=grid_size, n_agents=team_size, n_opponents=team_size)self.obs_dim = 150  # 设置智能体的观测维度 # set the observation dimension of agentsself.action_dim = self.env.action_space[0].n  # 设置智能体的动作维度,这里假定为一个五个维度的 # set the action dimension of agents, here set to a five-dimensionaldef reset(self):s = self.env.reset()sub_agent_obs = []for i in range(self.agent_num):sub_obs = np.array(s[i])#np.random.random(size=(14,))sub_agent_obs.append(sub_obs)return sub_agent_obsdef step(self, actions):self.env.render("human")time.sleep(0.4)sub_agent_obs = []sub_agent_reward = []sub_agent_done = []sub_agent_info = []action_index = [int(np.where(act==1)[0][0]) for act in actions]next_s, r, done, info = self.env.step(action_index)for i in range(self.agent_num):# r[agent_i] + 100 if info['win'] else r[agent_i] - 0.1sub_agent_obs.append(np.array(next_s[i]))sub_agent_reward.append([r[i] + 100 if info['win'] else r[i] - 0.1])sub_agent_done.append(done[i])sub_agent_info.append(info)return [sub_agent_obs, sub_agent_reward, sub_agent_done, sub_agent_info]

3.实验设置

        保持其他参数一致,分别设置四个智能体工艺同一套网络参数和4套网络参数进行实验。 旨在观察同一套参数控制同构智能体和不同参数控制同构智能体有什么不同。

4.实验结果

不同网络参数下智能体收敛曲线:

 

 

 

采用相同 网络参属下智能体收敛情况

 

由上图比较得,其他条件相同下,采用同一模型的多智能体和采用不同模型的多智能体都能正常收敛, 采用同一模型的多智能体收敛速度和程度略高于采用不同模型的智能体

5.效果demo

MAPPO 算法训练多智能体联合对抗

这篇关于强化学习-MAPPO算法解析与实践-Multi Agent Proximal Policy Optimization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938167

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

解析 XML 和 INI

XML 1.TinyXML库 TinyXML是一个C++的XML解析库  使用介绍: https://www.cnblogs.com/mythou/archive/2011/11/27/2265169.html    使用的时候,只要把 tinyxml.h、tinystr.h、tinystr.cpp、tinyxml.cpp、tinyxmlerror.cpp、tinyxmlparser.

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘