multi专题

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

【硬刚ES】ES基础(二十一) 单字符串多字段查询:Multi Match

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的ES部分补充。

2015 Multi-University Training Contest 5 1009 MZL#39;s Border

MZL's Border  Problem's Link:  http://acm.hdu.edu.cn/showproblem.php?pid=5351   Mean:  给出一个类似斐波那契数列的字符串序列,要你求给出的f[n]字符串中截取前m位的字符串s中s[1...i] = s[s.size()-i+1....s.size()]的最大长度。 analyse:   过计算

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴

MaPLe(论文解读): Multi-modal Prompt Learning

Comment: Accepted at CVPR2023 摘要 预训练的视觉语言模型(VL-PTMs)(比如CLIP)在下游任务中已经表现出不错的泛化能力。但是它们对输入文本提示模板的选择很敏感,需要仔细选择提示模板才能表现良好。 受到NLP领域的启发,最近的CLIP的自适应性方法开始学习提示作为文本输入,来微调CLIP以适应下游任务。本文能注意到,在CLIP的单个分支(语言或图像分支)中

2014 Multi-University Training Contest 1/HDU4861_Couple doubi(数论/规律)

解题报告 两人轮流取球,大的人赢,,, 贴官方题解,,,反正我看不懂,,,先留着理解 关于费马小定理 关于原根 找规律找到的,,,sad,,, 很容易找到循环节为p-1,每一个循环节中有一个非零的球,所以只要判断有多少完整循环节,在判断奇偶,,, #include <iostream>#include <cstdio>#include <cstring>

Chapter 2 multi-armed Bandit

引用:https://blog.csdn.net/mmc2015/article/details/51247677 https://blog.csdn.net/coffee_cream/article/details/58034628 https://blog.csdn.net/heyc861221/article/details/80129310   The most importa

【论文笔记】Multi-Task Learning as a Bargaining Game

Abstract 本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaining game),通过游戏,各个任务协商出共识梯度更新方向。 在一定条件下,这种问题具有唯一解(Nash Bargaining Solution),可以作为多任务学习中的一种原则方法。 本文提出Nash-MTL,推导了其收敛性的理论保证。 1 Introduction 大部分MTL优化算法遵循一个通用方

NLP-文本匹配-2017:BiMPM【Bilateral Multi-Perspective Matching for Natural Language Sentences】

NLP-文本匹配-2016:BiMPM【Bilateral Multi-Perspective Matching for Natural Language Sentences】

09.multi-get api操作

文章目录 1. 多个 GET API2. Source filtering3. Fields4. Routing 1. 多个 GET API 多 GET API 允许基于索引,类型(可选)和ID(也可能路由)获取多个文档。响应包括获取的 docs 列表,每个文件的结构都类似于 GET API 提供文件的结构。下面是一个例子: GET /_mget{"docs" : [{"_

论文学习—Efficient Multi-label Classification with Many Labels

论文学习:Efficient Multi-label Classification with Many Labels 摘要2. 多标签分类相关工作2.1 Label Transformation1. **降维(Dimensionality Reduction)**2. **回归模型(Regression Model)**3. **逆变换(Inverse Transformation)** 2

PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation

preprintKorea Seoul, Korea 文章目录 abstractmethodFlow Matching for Waveform GenerationHigh-frequency Information Modeling for Flow Matching demo page, PeriodWave 三者最好,而且能把原声中的噪声去掉,GAN一类声码器做不到的。 Perio

每日Attention学习16——Multi-layer Multi-scale Dilated Convolution

模块出处 [CBM 22] [link] [code] Do You Need Sharpened Details? Asking MMDC-Net: Multi-layer Multi-scale Dilated Convolution Network For Retinal Vessel Segmentation 模块名称 Multi-layer Multi-scale Dilate

MSRCR(Multi-Scale Retinex with Color Restore)

引言 始于Edwin Herbert Land(埃德温·赫伯特·兰德)于1971年提出的一种被称为色彩恒常的理论,并基于此理论的图像增强方法。Retinex这个词由视网膜(Retina)和大脑皮层(Cortex)合成而来.之所以这样设计,表明Land他也不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或两者都有关系。不同于传统的图像增强算法,如线性、非线性变换、图像锐化等只能增强图像

【0316】Postgres内核之VACUUM (FULL)运行 portal multi query (11)

上一篇文章: 【0315】Postgres内核之VACUUM (FULL)运行 portal query (10) 1. 执行 portal multi query 在【0315】Postgres内核之VACUUM (FULL)运行 portal query (10) 一文中讲解了Postgres内核运行portal查询的实现。 之后通过判断portal->strategy的值(PORTAL_

[etcd]raft总结/选举/数据同步,协议缺陷与解决/Multi Raft

raft协议是multi paxos协议的实现.Etcd、Consu都使用了raft 1.角色 raft协议中包含这几种角色 领导者:带头大哥1.提出提议,但是不需要确认,因为我是大哥;2.复制日志,数据以大哥为准,3,领导者会定时发送心跳,确定自己的位置.告诉小弟老实呆着,一旦心跳超时,小弟就会重新选举大哥. 跟随者:只要大哥发送心跳,我就老实的同步日志.一旦没有心跳,我就变成候选人,开

读论文《Behavior Pattern Mining-based Multi-Behavior Recommendation》

论文地址:arxiv.org/pdf/2408.12152v1 项目地址:GitHub - rookitkitlee/BPMR 基于行为模式挖掘的多行为推荐:论文提出了一种新颖的多行为推荐算法(BPMR),旨在通过分析用户和项目之间的复杂交互模式来提高推荐系统的有效性。这种方法特别关注于用户除了购买之外的其他行为,例如页面浏览和收藏等辅助行为,这些行为可以提供更丰富的用户交互数据,帮助更准确地

Error could possibly be due to quotes being ignored when a multi-char delimiter is used.

python pandas 代码报错 Error could possibly be due to quotes being ignored when a multi-char delimiter is used.# google 翻译: 错误可能是由于在使用多字符分隔符时忽略了引号。 发现是因为数据的分隔符的原因,我用的其他人的代码,我希望数据一行为一个数据,不希望被空格或者其他符号分隔

AlphaPose姿态估计论文翻译和代码解读RMPE: Regional Multi-Person Pose Estimation

姿态估计模型AlphoPose模型的论文 或者论文V3版 ICCV2017接收,上海交大和腾讯优图的论文 代码 ,基于pytorch或者Tensorflow 如果想了解姿态估计的简单概述,可以点击我的另一篇综述文章 RMPE: Regional Multi-Person Pose Estimation Abstract 自然场景的多人姿态估计是一个极大的挑战。虽然最好的人类检测器已经有很好的

姿态估计Rethinking on Multi-Stage Networks for Human Pose Estimation论文梗概及代码解读

2018年COCO关键点检测冠军算法MSPN,姿态估计,Top-down的技术路线 应该是截止2019年10月26日时开源的最好的姿态估计算法之一了 旷世出品 代码链接点这,是基于Pytorch的 论文链接点这 摘要 姿态估计方法以基本形成one-stage 和 multi-stage两个路线 多阶段看上去更适合任务,但是现在多阶段的性能还是不如单阶段的 我们论文就来研究这个问题,我们讨论当下

DA14695---multi-link简单解析

一、system_init         在system_init中创建ble_multi_link_task任务,先是开启了BLE管理器,再注册ble_multi_link_task任务 /* Initialize BLE Manager */ble_mgr_init();/* Start the Multi-Link application task. */OS_TASK_CREATE

多头注意力机制(Multi-Head Attention)

文章目录 多头注意力机制的作用多头注意力机制的工作原理为什么使用多头注意力机制?代码示例 多头注意力机制(Multi-Head Attention)是Transformer架构中的一个核心组件。它在机器翻译、自然语言处理(NLP)等领域取得了显著的成功。多头注意力机制的引入是为了增强模型的能力,使其能够从不同的角度关注输入序列的不同部分,从而捕捉更多层次的信息。 多头注意力机

【C++11 之新增容器 array、foward_list、tuple、unordered_(multi)map/set】应知应会

C++11 标准中新增了多个容器,这些容器为 C++ 程序员提供了更多的选择,以满足不同的编程需求。以下是对这些新容器的介绍和使用案例: std::array 介绍: std::array 是一个固定大小的数组容器,它在栈上分配内存,并提供了类似于标准库容器的接口。它提供了更好的类型安全性和范围检查,同时保持了与原生数组相似的性能。std::array 的大小必须在编译时确定,并且不能更改。

Elasticsearch java API (10)Multi Get API

Multi Get API编辑 多让API允许基于他们得到的文档列表 index, type和 id: MultiGetResponse multiGetItemResponses = client.prepareMultiGet().add("twitter", "tweet", "1") // <1> .add("twitter", "tweet