多头注意力机制(Multi-Head Attention)

2024-06-24 08:20

本文主要是介绍多头注意力机制(Multi-Head Attention),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 多头注意力机制的作用
      • 多头注意力机制的工作原理
      • 为什么使用多头注意力机制?
      • 代码示例

多头注意力机制(Multi-Head Attention)是Transformer架构中的一个核心组件。它在机器翻译、自然语言处理(NLP)等领域取得了显著的成功。多头注意力机制的引入是为了增强模型的能力,使其能够从不同的角度关注输入序列的不同部分,从而捕捉更多层次的信息。

多头注意力机制的作用

在多头注意力机制中,the number of heads 参数指的是“头”的数量,即注意力机制的独立并行子层的数量。每个头独立地执行注意力机制(Self-Attention 或 Attention),然后将这些头的输出连接起来,再通过线性变换得到最终的输出。

多头注意力机制的工作原理

以下是多头注意力机制的详细步骤和解释:

  1. 线性变换

    • 对输入进行线性变换,生成多个查询(Query)、键(Key)和值(Value)。
    • 每个头都有独立的线性变换,这意味着不同的头可以学到不同的特征。

    假设输入的维度是 ( d m o d e l d_{model} dmodel),头的数量是 ( h h h),每个头的维度是 ( d k = d m o d e l / h d_k = d_{model} / h dk=dmodel/h)。

    对于输入 ( X \mathbf{X} X),我们有:

    Q i = X W i Q , K i = X W i K , V i = X W i V \mathbf{Q}_i = \mathbf{X} \mathbf{W}_i^Q, \quad \mathbf{K}_i = \mathbf{X} \mathbf{W}_i^K, \quad \mathbf{V}_i = \mathbf{X} \mathbf{W}_i^V Qi=XWiQ,Ki=XWiK,Vi=XWiV

    其中 ( i i i) 表示第 (i) 个头,( W i Q , W i K , W i V \mathbf{W}_i^Q, \mathbf{W}_i^K, \mathbf{W}_i^V WiQ,WiK,WiV) 是线性变换矩阵。

  2. 计算注意力

    • 每个头独立地计算注意力(例如,使用缩放点积注意力机制)。

    缩放点积注意力的公式为:
    [
    \text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_k}}\right) \mathbf{V}
    ]

  3. 连接(Concatenation)

    • 将所有头的输出连接起来,形成一个新的矩阵。

    如果有 (h) 个头,每个头的输出维度是 (d_k),则连接后的维度为 (h \times d_k = d_{model})。

  4. 线性变换

    • 将连接后的矩阵通过一个线性变换,得到最终的输出。

    [
    \text{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_h) \mathbf{W}^O
    ]
    其中,(\mathbf{W}^O) 是输出的线性变换矩阵。

为什么使用多头注意力机制?

  1. 多样性:不同的头可以关注输入的不同部分,捕捉到更多样化的特征和模式。
  2. 稳定性:多个头的存在使得模型在学习过程中更加稳定和鲁棒。
  3. 增强模型能力:通过并行地执行多个注意力机制,模型能够更好地捕捉长程依赖关系和复杂的结构信息。

代码示例

以下是一个简单的 PyTorch 示例,展示多头注意力机制的实现:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass MultiHeadAttention(nn.Module):def __init__(self, d_model, num_heads):super(MultiHeadAttention, self).__init__()self.num_heads = num_headsself.d_model = d_modelself.d_k = d_model // num_headsassert d_model % num_heads == 0, "d_model must be divisible by num_heads"self.query_linear = nn.Linear(d_model, d_model)self.key_linear = nn.Linear(d_model, d_model)self.value_linear = nn.Linear(d_model, d_model)self.out_linear = nn.Linear(d_model, d_model)def forward(self, query, key, value):batch_size = query.size(0)# Linear projectionsquery = self.query_linear(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)key = self.key_linear(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)value = self.value_linear(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)# Scaled dot-product attentionscores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))attention = F.softmax(scores, dim=-1)output = torch.matmul(attention, value)# Concat and linear projectionoutput = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)output = self.out_linear(output)return output# Example usage
d_model = 512
num_heads = 8
batch_size = 64
sequence_length = 10mha = MultiHeadAttention(d_model, num_heads)
query = torch.randn(batch_size, sequence_length, d_model)
key = torch.randn(batch_size, sequence_length, d_model)
value = torch.randn(batch_size, sequence_length, d_model)output = mha(query, key, value)
print(output.shape)  # Expected output: (64, 10, 512)

在这个示例中:

  • d_model 是输入和输出的特征维度。
  • num_heads 是头的数量。
  • d_k 是每个头的维度。
  • 输入 querykeyvalue 的形状为 (batch_size, sequence_length, d_model)
  • 输出的形状为 (batch_size, sequence_length, d_model)

多头注意力机制通过将注意力机制并行化,并应用多个独立的注意力头,从而增强了模型的表示能力和学习能力。

这篇关于多头注意力机制(Multi-Head Attention)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089618

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确