python ERA5 画水汽通量散度图地图:风速风向矢量图、叠加等高线、色彩分级、添加shp文件、添加位置点及备注

本文主要是介绍python ERA5 画水汽通量散度图地图:风速风向矢量图、叠加等高线、色彩分级、添加shp文件、添加位置点及备注,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动机

有个同事吧,写论文,让我帮忙出个图,就写了个代码,然后我的博客好久没更新了,就顺便贴上来了!
很多人感兴趣风速的箭头怎样画,可能这种图使用 NCL 非常容易,很多没用过代码的小朋友,就有点犯怵,怕 python 画起来很困难。但是不然,看完我的代码,就会发现很简单,并且也可以批量,同时还能自定义国界等shp文件,这对于发sci等国际论文很重要,因为有时候内置的国界是有问题的。

数据

本次博客使用的数据为 ERA5 hourly data on pressure levels from 1940 to present数据,数据的下载方式及注册账号,我在前面的博客中都写过,详细可参考以下两篇博客:

http://t.csdnimg.cn/657dg
http://t.csdnimg.cn/YDELh
以下为我们数据介绍界面和需要下载的变量:
数据介绍地址:https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
在这里插入图片描述

数据选择界面

在这里插入图片描述

代码

废话不多说,直接上代码。

导入包

import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import geopandas as gpd
# 设置全局字体为新罗马
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman']
# plt.rcParams['font.serif'] = ['SimSun']
# 设置全局字体权重为normal
plt.rcParams['font.weight'] = 'normal'# 设置全局字体大小
matplotlib.rcParams['font.size'] = 19  # 设置全局字体大小为12

画水汽通量散度图

# 加载shapefile
gdf = gpd.read_file(r'./shp/Pronvience.shp')# 使用geopandas读取地理数据,这里我们手动创建一个GeoDataFrame
gdf_point = gpd.GeoDataFrame({'City': ['Mingfeng Station', 'Kalasai Station'],'Latitude': [37.5,37],'Longitude': [80,81]
}, geometry=gpd.points_from_xy([80,81], [37.5,37]))# 载入数据
data_path = r'./20170731_case.nc'  # 替换为您的文件路径
ds = xr.open_dataset(data_path)time = '2017-07-30T22:00:00'# level_hPa = 700# for level_hPa in [200,500,700,850]:
for level_hPa in [600]:# 选择特定时间和气压层ds_selected = ds.sel(time= time, level=level_hPa)  # 示例:2022年1月1日0时,850hPa# 获取数据变量u = ds_selected['u']  # 东西向风速v = ds_selected['v']  # 南北向风速q = ds_selected['q']  # 比湿# 获取经度和纬度,假设这些是坐标维度longitude = u.longitudelatitude = u.latitude# 计算水汽通量qu = q * u  # 东西向水汽通量qv = q * v  # 南北向水汽通量# 计算水汽通量散度 单位为div_q = (qu.differentiate('longitude') + qv.differentiate('latitude'))* 10# 打印结果# print(div_q)# 创建图形和轴对象fig, ax = plt.subplots(figsize=(6, 6),dpi=500)  # 图形尺寸为10x6英寸# 可视化散度结果contour = div_q.plot(add_colorbar=False, cmap="RdBu_r", vmin=-1, vmax=1)  # 使用黑色线条绘制20个等级的等高线## 在ax上绘制等高线图div_q.plot.contour(levels=25, colors='black',linewidths=0.6)# 添加颜色条fig.colorbar(contour, ax=ax, label='Water Vapor Flux Divergence (g/cm²/s)')# 使用quiver函数需要确保数据的间隔,这里我们每隔5个点取样Q = ax.quiver(longitude[::5], latitude[::5], u[::5, ::5], v[::5, ::5], scale=300,color="red")# 绘制shapefilegdf.plot(ax=ax, color='none', edgecolor='green',linewidths=0.7)  # 无填充,黑色边界# gdf_point.plot(ax=ax, color='red')  # 标记纽约的位置# 绘制点ax.scatter(gdf_point['Longitude'], gdf_point['Latitude'], color='red', s=100) # 标注城市名称for x, y, city in zip(gdf_point['Longitude'], gdf_point['Latitude'], gdf_point['City']):ax.text(x, y, ' ' + city, verticalalignment='center', fontsize=15)# 设置经纬度范围ax.set_xlim(75, 90)ax.set_ylim(30, 45)ax.set_xlabel('Longitude')ax.set_ylabel('Latitude')ax.set_title('')  # 清除标题# 添加标题在图片正下方# fig.suptitle('{}hPa {}'.format( level_hPa,time.replace("T"," ") ), y=-0.01,va='bottom')# 调整布局以避免重叠和裁剪fig.tight_layout()plt.savefig("./{}hPa {}.jpg".format( level_hPa,time.replace(":","") ), dpi=500)plt.show()

水汽通量图

# 加载shapefile
gdf = gpd.read_file(r'./shp/Pronvience.shp')# 载入数据
data_path = r'./20170731_case.nc'  # 替换为您的文件路径
ds = xr.open_dataset(data_path)time = '2017-07-30T22:00:00'
for level_hPa in [200,500,600,700,850]:# 选择特定时间和气压层ds_selected = ds.sel(time= time, level=level_hPa)  # 示例:2022年1月1日0时,850hPa# 获取数据变量u = ds_selected['u']  # 东西向风速v = ds_selected['v']  # 南北向风速q = ds_selected['q']  # 比湿# 获取经度和纬度,假设这些是坐标维度longitude = u.longitudelatitude = u.latitude# 计算水汽通量qu = q * u * 100  # 东西向水汽通量qv = q * v * 100 # 南北向水汽通量wvf = np.sqrt(qu**2 + qv**2)# 计算水汽通量散度 单位为# div_q = (qu.differentiate('longitude') + qv.differentiate('latitude'))* 10# 打印结果# print(div_q)# 创建图形和轴对象fig, ax = plt.subplots(figsize=(6, 6),dpi=400)  # 图形尺寸为10x6英寸# 可视化散度结果contour = wvf.plot(add_colorbar=False, cmap="RdBu_r", vmin=0, vmax=10)  # 使用黑色线条绘制20个等级的等高线## 在ax上绘制等高线图wvf.plot.contour(levels=25, colors='black',linewidths=0.6)# 添加颜色条fig.colorbar(contour, ax=ax, label='Water Vapor Flux(g/cm/s)')# 使用quiver函数需要确保数据的间隔,这里我们每隔5个点取样Q = ax.quiver(longitude[::5], latitude[::5], u[::5, ::5], v[::5, ::5], scale=300,color="red")# 绘制shapefilegdf.plot(ax=ax, color='none', edgecolor='green',linewidths=0.7)  # 无填充,黑色边界# 设置经纬度范围ax.set_xlim(75, 90)ax.set_ylim(30, 45)ax.set_xlabel('Longitude')ax.set_ylabel('Latitude')ax.set_title('')  # 清除标题# 添加标题在图片正下方# fig.suptitle('{}hPa {}'.format( level_hPa,time.replace("T"," ") ), y=-0.01,va='bottom')# 调整布局以避免重叠和裁剪fig.tight_layout()plt.savefig("./WVF_{}hPa {}.jpg".format( level_hPa,time.replace(":","") ), dpi=500)plt.show()

结果图

在这里插入图片描述

这篇关于python ERA5 画水汽通量散度图地图:风速风向矢量图、叠加等高线、色彩分级、添加shp文件、添加位置点及备注的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933862

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步