代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、理论基础

题目链接/文章讲解/视频讲解:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

状态:已解决

1.动规定义 

        动规,简称DP,适用于存在很多重叠子问题的问题。与贪心区别主要是动规中每一个状态一定是由上一个状态推导出来的,而贪心没有状态推导,而是从局部直接选最优的;也就说贪心的局部最优到最后一定是全局最优,但是动规的局部最优却不一定是全局最优,它需要根据上一个状态来推导下一个状态。

        例如,对于经典的背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

2.解题步骤

        动规的题很晦涩,但其实是有迹可循的。最重要的就是理清楚dp[i]的含义,推出递推公式。一般的动规题可根据以下五步进行:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

        注意,一定是先确定了递推公式,再进行初始化的。因为一些情况是递推公式决定了dp数组如何初始化的。

二、509. 斐波那契数

题目链接/文章讲解/视频讲解:https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html

状态:已解决

1.思路 

        递推、递归、动规三者其实很接近。递推一般指的是递推公式,而递归和动规都是实现递推公式的一种办法。之前的递归章节的问题就是根据递推公式进行的函数递归,而动规的转移方程也大多为递推公式。此题已说明了递推公式,那么这题一大半就已经能解决了。

        根据动规五部曲:

(1)确定dp数组以及下标含义:

        由于题目要求求第n个数的斐波那契数值,那么我们只需用一个一维数组来保存数值即可,即dp。dp[i]定义为第i个数的斐波那契数值。

(2)确定递推公式:

        题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

(3)初始化dp数组:

        题目也已经给了我们初始化的提示了:

dp[0] = 0;
dp[1] = 1;

(4)确定遍历顺序:

        根据递归公式dp[i] = dp[i - 1] + dp[i - 2]中可以看出,我们可以知道dp[i]是依赖 dp[i - 1] 和 dp[i - 2],因此遍历的顺序一定是从前到后遍历的        

(5)举例推导dp数组

        按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55

        然后再代码打印一下,看结果是否与推导结果一致。

2.代码实现

class Solution {
public:int fib(int n) {vector<int> dp(n+1);if(n == 0) return 0;if(n == 1) return 1;dp[0]=0,dp[1]=1;for(int i=2;i<=n;i++){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

时间复杂度:O(n)

空间复杂度:O(n)

三、70. 爬楼梯

题目链接/文章讲解/视频讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html

状态:已解决

1.思路 

        做动规一般是需要一个大致方向才能去套模板的,这题一开始拿着可能有点懵,但是多计算几个层数,就会发现爬楼梯的方法其实是有迹可循的,例如,题目初始只给了两种爬楼梯:一种是一次爬一阶,一种是一次爬两阶,也就是说,当我们处于第i层台阶时,我们要么是从第i-2层上来的,要么是从第i-1层上来的。想清楚这点,那么,这道题的大致思路就明白了。

(1)确定dp数组及下标含义:

        只需要一个一维数组来记录到每个楼层的方法数,dp[i]未爬到第i层楼梯的方法数。

(2)确定递推公式:

        如开始的分析,我们知道当我们处于第i层台阶时,我们要么是从第i-2层上来的,要么是从第i-1层上来的。因此,dp[i]=dp[i-2]+dp[i-1];

(3)dp数组初始化:

        n从1开始,由于一次可以爬一阶或者二阶,那么就应该初始化dp[1]和dp[2]

dp[1]=1;
dp[2]=2;

(4)确定遍历顺序:

        由递推公式我们可以知道此题只能从前往后推。

(5) 举例推导dp数组

        当n为5的时候,dp数组:

         然后再打印代码运行结果,与推导结果进行对比。

2.代码实现

class Solution {
public:int climbStairs(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[1]=1,dp[2]=2;for(int i=3;i<=n;i++){dp[i] = dp[i-1]+dp[i-2];}return dp[n];}
};

四、746. 使用最小花费爬楼梯

题目链接/文章讲解/视频讲解:https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html

状态:已解决

1.思路

        这题个人觉得跟上题差不多,只是由于要求最小花费,需要加个求最小操作。

(1)确定dp数组以及下标含义:

        使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

(2)确定递推公式:

        跟上题一样,可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

  1.         dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
  2.         dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

        由于是选最小的,因此求个最小就行了,即dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

(3)dp数组初始化:

      根据题意“你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说到达第 0 个台阶是不花费的,但从第0个台阶 往上跳的话,需要花费cost[0]。故所以初始化为:

dp[0]=0;
dp[1]=0;

(4)确定遍历顺序:

        因为是从下往上确定台阶花费的,即dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

(5)举例推导dp数组:

        拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

        接下来打印代码得到的dp数组,看与推导是否一致。

2.代码实现 

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size()+1);dp[0]=0;dp[1]=0;for(int i=2;i<dp.size();i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[dp.size()-1];}
};

这篇关于代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904184

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖