代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、理论基础

题目链接/文章讲解/视频讲解:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

状态:已解决

1.动规定义 

        动规,简称DP,适用于存在很多重叠子问题的问题。与贪心区别主要是动规中每一个状态一定是由上一个状态推导出来的,而贪心没有状态推导,而是从局部直接选最优的;也就说贪心的局部最优到最后一定是全局最优,但是动规的局部最优却不一定是全局最优,它需要根据上一个状态来推导下一个状态。

        例如,对于经典的背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

2.解题步骤

        动规的题很晦涩,但其实是有迹可循的。最重要的就是理清楚dp[i]的含义,推出递推公式。一般的动规题可根据以下五步进行:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

        注意,一定是先确定了递推公式,再进行初始化的。因为一些情况是递推公式决定了dp数组如何初始化的。

二、509. 斐波那契数

题目链接/文章讲解/视频讲解:https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html

状态:已解决

1.思路 

        递推、递归、动规三者其实很接近。递推一般指的是递推公式,而递归和动规都是实现递推公式的一种办法。之前的递归章节的问题就是根据递推公式进行的函数递归,而动规的转移方程也大多为递推公式。此题已说明了递推公式,那么这题一大半就已经能解决了。

        根据动规五部曲:

(1)确定dp数组以及下标含义:

        由于题目要求求第n个数的斐波那契数值,那么我们只需用一个一维数组来保存数值即可,即dp。dp[i]定义为第i个数的斐波那契数值。

(2)确定递推公式:

        题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

(3)初始化dp数组:

        题目也已经给了我们初始化的提示了:

dp[0] = 0;
dp[1] = 1;

(4)确定遍历顺序:

        根据递归公式dp[i] = dp[i - 1] + dp[i - 2]中可以看出,我们可以知道dp[i]是依赖 dp[i - 1] 和 dp[i - 2],因此遍历的顺序一定是从前到后遍历的        

(5)举例推导dp数组

        按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55

        然后再代码打印一下,看结果是否与推导结果一致。

2.代码实现

class Solution {
public:int fib(int n) {vector<int> dp(n+1);if(n == 0) return 0;if(n == 1) return 1;dp[0]=0,dp[1]=1;for(int i=2;i<=n;i++){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

时间复杂度:O(n)

空间复杂度:O(n)

三、70. 爬楼梯

题目链接/文章讲解/视频讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html

状态:已解决

1.思路 

        做动规一般是需要一个大致方向才能去套模板的,这题一开始拿着可能有点懵,但是多计算几个层数,就会发现爬楼梯的方法其实是有迹可循的,例如,题目初始只给了两种爬楼梯:一种是一次爬一阶,一种是一次爬两阶,也就是说,当我们处于第i层台阶时,我们要么是从第i-2层上来的,要么是从第i-1层上来的。想清楚这点,那么,这道题的大致思路就明白了。

(1)确定dp数组及下标含义:

        只需要一个一维数组来记录到每个楼层的方法数,dp[i]未爬到第i层楼梯的方法数。

(2)确定递推公式:

        如开始的分析,我们知道当我们处于第i层台阶时,我们要么是从第i-2层上来的,要么是从第i-1层上来的。因此,dp[i]=dp[i-2]+dp[i-1];

(3)dp数组初始化:

        n从1开始,由于一次可以爬一阶或者二阶,那么就应该初始化dp[1]和dp[2]

dp[1]=1;
dp[2]=2;

(4)确定遍历顺序:

        由递推公式我们可以知道此题只能从前往后推。

(5) 举例推导dp数组

        当n为5的时候,dp数组:

         然后再打印代码运行结果,与推导结果进行对比。

2.代码实现

class Solution {
public:int climbStairs(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[1]=1,dp[2]=2;for(int i=3;i<=n;i++){dp[i] = dp[i-1]+dp[i-2];}return dp[n];}
};

四、746. 使用最小花费爬楼梯

题目链接/文章讲解/视频讲解:https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html

状态:已解决

1.思路

        这题个人觉得跟上题差不多,只是由于要求最小花费,需要加个求最小操作。

(1)确定dp数组以及下标含义:

        使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

(2)确定递推公式:

        跟上题一样,可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

  1.         dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
  2.         dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

        由于是选最小的,因此求个最小就行了,即dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

(3)dp数组初始化:

      根据题意“你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说到达第 0 个台阶是不花费的,但从第0个台阶 往上跳的话,需要花费cost[0]。故所以初始化为:

dp[0]=0;
dp[1]=0;

(4)确定遍历顺序:

        因为是从下往上确定台阶花费的,即dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

(5)举例推导dp数组:

        拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

        接下来打印代码得到的dp数组,看与推导是否一致。

2.代码实现 

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size()+1);dp[0]=0;dp[1]=0;for(int i=2;i<dp.size();i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[dp.size()-1];}
};

这篇关于代码随想录算法训练营第三十八天| 理论基础、LeetCode 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904184

相关文章

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java