Accuracy准确率,Precision精确率,Recall召回率,F1 score

2024-04-10 08:36

本文主要是介绍Accuracy准确率,Precision精确率,Recall召回率,F1 score,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

真正例和真反例是被正确预测的数据,假正例和假反例是被错误预测的数据。然后我们需要理解这四个值的具体含义:
TP(True Positive):被正确预测的正例。即该数据的真实值为正例,预测值也为正例的情况;
TN(True Negative):被正确预测的反例。即该数据的真实值为反例,预测值也为反例的情况;
FP(False Positive):被错误预测的正例。即该数据的真实值为反例,但被错误预测成了正例的情况;
FN(False Negative):被错误预测的反例。即该数据的真实值为正例,但被错误预测成了反例的情况。

  1. 准确率(Accuracy)表示分类正确的样本占总样本个数的比例。
    Acc = (TP+TN)/(TP+TN+FP+FN)
    Accuracy是衡量分类模型的最直白的指标,但缺陷也是明显的。假设有100个样本,其中有99个都是正样本,则分类器只需要一直预测为正例,就可以得到99%的准确率,实际上这个分类器性能是很低下的。也就是说,当不同类别的样本所占的比例严重不平衡时,占比大的类别会是影响准确率的最主要的因素。所以,只有当数据集各个类别的样本比例比较均衡时,Accuracy这个指标才是一个比较好的衡量标准。因此,必须参考其他指标才能完整评估模型的性能。
  2. Precision精确率又叫查准率,表示预测结果为正例的样本中实际为正样本的比例
    Pre = TP/(TP+FP)
    当反例被错误预测成正例(FP)的代价很高时,适合用精确率。根据公式可知,精确率越高,FP越小。比如在垃圾在垃圾邮件检测中,假正例意味着非垃圾邮件(实际为负)被错误的预测为垃圾邮件(预测为正)。如果一个垃圾邮件监测系统的查准率不高导致很多非垃圾邮件被归到垃圾邮箱里去,那么邮箱用户可能会丢失或者漏看一些很重要的邮件。
  3. Recall召回率又被称为查全率,表示预测结果为正样本中实际正样本数量占全样本中正样本的比例。
    Rec = TP/(TP+FN)
    当正例被错误的预测为反例(FN)产生的代价很高时,适合用召回率。根据公式可知,召回率越高,FN越小。比如说在银行的欺诈检测或医院的病患者检测中,如果将欺诈性交易(实际为正)预测为非欺诈性交易(预测为负),则可能会给银行带来非常严重的损失。再比如以最近的新冠疫情为例,如果一个患病者(实际为正)经过试剂检测被预测为没有患病(预测为负),这样的假反例或者说假阴性产生的风险就非常大
  4. F1 score是精确率和召回率的一个加权平均。
    F1 = 2 * (P*R/(P+R))
    Precision体现了模型对负样本的区分能力,Precision越高,模型对负样本的区分能力越强;Recall体现了模型对正样本的识别能力,Recall越高,模型对正样本的识别能力越强。F1 score是两者的综合,F1 score越高,说明模型越稳健。

这篇关于Accuracy准确率,Precision精确率,Recall召回率,F1 score的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890560

相关文章

856. Score of Parentheses

856. Score of Parentheses class Solution:def scoreOfParentheses(self, s: str) -> int:stack=[]i=0for c in s:if c=='(':stack.append(c)else:score=0while stack[-1]!='(':score+=stack.pop()stack.pop()score

uni-app 扫码优化:谈谈我是如何提升安卓 App 扫码准确率的

一. 前言 之前的一个项目遭到用户吐槽:“你们这个 App 扫码的正确率太低了,尤其是安卓的设备。经常性的扫码扫不出来,就算是扫出来了,也是错误的结果!” 由于之前是扫描二维码的需求,所以没有对扫描条形码做严格的测试,客户提示说是条形码扫描效率低下。随即,我用自己的手机测试了一下,在安卓手机上确实有这样的问题,扫码准确率确实是低,尤其是条形码,扫码效率慢且不准确。扫描二维码的的效率还算可以

delphi如何给按钮添加单键快捷键(F1~F12)

用action 讲按钮窗体的Keypreview设为True,然后加如下代码 Delphi/Pascal code ? 1 2 3 4 5 6 procedure  TForm1 . FormKeyDown(Sender: TObject;  var  Key:  Word ;    Shift: TShiftState); begin    i

Elasticsearch func_score

场景介绍 衰减函数 总结 官网文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.x/query-dsl-function-score-query.html 作者公众号: 1.场景介绍 在全文检索中,排序是一个很讲究的事。关键字命中,是全文检索中一个很关键的因素。然而,某些时候,我们关键字的命中可能非常低,或者来两个

西湖大学卢培龙团队突破:精确从头设计异手性蛋白复合物,开启镜像蛋白研究新篇章

在生物科学的浩瀚星空中,蛋白质作为生命活动的基本承担者,其设计与合成一直是科学家们不懈探索的领域。近日,西湖大学卢培龙团队携手清华大学刘磊团队,在《Cell Research》期刊上发表了一项革命性的研究成果——首次实现了异手性蛋白复合物的精确从头设计,这一突破不仅填补了蛋白质设计领域的一大空白,更为分子工具、疾病治疗及诊断技术的发展开辟了新的可能性。 异手性蛋白:生命科学的神秘探索 蛋白质是

Hinton等人最新研究:大幅提升模型准确率,标签平滑技术 2019-7-8

导读:损失函数对神经网络的训练有显著影响,也有很多学者人一直在探讨并寻找可以和损失函数一样使模型效果更好的函数。后来,Szegedy 等学者提出了标签平滑方法,该方法通过计算数据集中 hard target 的加权平均以及平均分布来计算交叉熵,有效提升了模型的准确率。近日,Hinton 团队等人在新研究论文《When Does Label Smoothing Help?》中,就尝试对标签平滑技术对

Redis Zset 类型:Score 属性在数据排序中的作用

Zset 有序集合 一 . zset 的引入二 . 常见命令2.1 zadd、zrange2.2 zcard2.3 zcount2.4 zrevrange、zrangebyscore2.5 zpopmax、zpopmin2.6 bzpopmax、bzpopmin2.7 zrank、zrevrank2.8 zscore2.9 zrem、zremrangebyrank、zremrangebysc

StyleGAN和Diffusion结合能擦出什么火花?PreciseControl:实现文本到图像生成中的精确属性控制!

之前给大家介绍过CycleGAN和Diffusion结合的一项优秀的工作,感兴趣的小伙伴可以点击以下链接阅读~ 图像转换新风尚!当CycleGAN遇到Diffusion能擦出什么火花?CycleGAN-Turbo来了! 今天给大家介绍StyleGAN和Diffusion结合的一项工作PreciseControl,通过结合扩散模型和 StyleGAN 实现文本到图像生成中的精确属性控制,该文章已

单片机中的定时器:精确时间的掌控者

在单片机的世界里,定时器就像是一个精确的时间守护者,默默地为各种任务提供准确的时间基准。从简单的定时功能到复杂的实时控制系统,定时器都发挥着至关重要的作用。本文将深入探讨单片机中的定时器,包括其工作原理、应用场景以及编程实现等方面,旨在帮助读者更好地理解和应用这一重要的单片机功能模块。 目录 一、定时器的基本概念 二、定时器的工作原理 三、定时器的应用场景 四、定时器的编程实现 五、定

NLP-信息抽取-NER-2015-BiLSTM+CRF(一):命名实体识别【预测每个词的标签】【评价指标:精确率=识别出正确的实体数/识别出的实体数、召回率=识别出正确的实体数/样本真实实体数】

一、命名实体识别介绍 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型。是信息提取, 问答系统, 句法分析, 机器翻译等应用领域的重要基础工具, 在自然语言处理技术走向实用化的过程中占有重要地位. 包含行业, 领域专有名词, 如人名, 地名, 公司名, 机构名, 日期, 时间, 疾病名, 症状名, 手术名称, 软