Redis Zset 类型:Score 属性在数据排序中的作用

2024-09-04 09:28

本文主要是介绍Redis Zset 类型:Score 属性在数据排序中的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Zset 有序集合

    • 一 . zset 的引入
    • 二 . 常见命令
      • 2.1 zadd、zrange
      • 2.2 zcard
      • 2.3 zcount
      • 2.4 zrevrange、zrangebyscore
      • 2.5 zpopmax、zpopmin
      • 2.6 bzpopmax、bzpopmin
      • 2.7 zrank、zrevrank
      • 2.8 zscore
      • 2.9 zrem、zremrangebyrank、zremrangebyscore
      • 2.10 zincrby
      • 2.11 集合间操作
        • 交集 : zinterstore
        • 并集 : zunionstore
      • 小结
    • 三 . 内部编码
    • 四 . 应用场景 : 排行榜

Hello , 大家好 , 这个专栏给大家带来的是 Redis 系列 ! 本篇文章给大家讲解的是 Redis 中 Zset 类型的相关内容 , 它在 set 类型的基础上又引入了 score 属性 , 那我们可以一起来看看 score 具体起到了什么作用 .

在这里插入图片描述

本专栏旨在为初学者提供一个全面的 Redis 学习路径,从基础概念到实际应用,帮助读者快速掌握 Redis 的使用和管理技巧。通过本专栏的学习,能够构建坚实的 Redis 知识基础,并能够在实际学习以及工作中灵活运用 Redis 解决问题 .
专栏地址 : Redis 入门实践


一 . zset 的引入

我们之前学习过 set 类型 . 他有两个显著的特点

  1. 唯一 : set 中的元素不能重复
  2. 无序 : set 中的元素是无序的 , 比如 : [1 , 2 , 3] 和 [3 , 2 , 1] 是同一个集合

而 list 是要求有序的 , [1 , 2 , 3] 和 [3 , 2 , 1] 不是同一个列表
那大家要注意一点 : 我们的有序集合 (Zset) 中的有序和列表 (list) 中的有序不是一个有序 .

  • Zset 中的有序指的是升序 / 降序
  • list 中的有序指的是顺序固定

那 Zset 既然是有序的 , 那它所排序的规则是什么 ?
为了方便描述排序规则 , 我们给 Zset 的 member 中同时引入了一个属性 : score (分数) , 他是浮点类型的 . 每个 member 都会分配一个分数 . 进行排序就按照此处的分数大小来进行升序 / 降序排序 .
image.png
我们从图片里面也可以看到 , 在 value 中给每个元素都分配了一个分数属性 .

那 Zset 也是 set , 也要求元素是不能重复的 , 但是分数是可以重复的 .

Zset 主要还是用来存储元素的 , 分数属性只是起到了一个辅助的作用

那我们再来对比一下 list、set、Zset 的具体区别

数据结构是否允许重复元素是否有序有序依据应用场景
列表索引下标消息队列等
集合用户标签等
有序集合分数属性排行榜系统等

二 . 常见命令

2.1 zadd、zrange

zadd 的作用是向有序集合中添加元素以及分数属性
语法 : zadd key score1 member1 [score2 member2]

在添加的时候 , 既需要添加元素 , 又需要添加分数属性

如果当前的 member 并不存在 , 此时就会达到添加新 member 的效果 . 如果 member 已经存在 , 此时就会更新分数
时间复杂度 : O(logN) , N 指的是有序集合中的元素个数

由于 Zset 是有序结构 , 要求新增的元素就必须要放到合适的位置上

返回值代表新增成功元素的个数

如果产生了修改操作 , 那返回值是返回 0 而不是 1 , 因为修改操作并不算新增元素

如果多个元素有相同的分数 , 那么相同的元素之间就按照字典序进行排列
image.png
如果多个元素分数不同 , 那么这些元素之间依然以 score 来进行升序排列 .

Zset 的默认排序方式是升序的 .

那 zadd 还有一系列的额外属性可以设置
zadd key [nx | xx] [gt | lt] [ch] [incr] score1 member1 [score2 member2]
我们分别来看 :

  1. [nx | xx] : nx 表示不存在才去设置 , 而 xx 指的是存在才去设置 (相当于更新操作)

我们的 nx / xx 实际上并不是针对 key 来去判断的 , 而是根据 member 来去判断的 .
如果 member 不存在 , nx 就会设置成功 , 但是如果 member 存在 , nx就会设置失败 .
如果 member 存在 , xx 就会设置成功 , 但是如果 member 不存在 , xx 就会设置失败 .

  1. [gt | lt] : 如果要插入的元素不存在 , 正常插入 ; 如果要插入的元素存在 , 那就需要判断下面两条规则
    1. gt (greater than) : 大于 , 如果新的分数 > 当前分数 , 更新才会成功
    2. lt (less than) : 小于 , 如果新的分数 < 当前分数 , 更新才会成功

也就是说我们现在要更新分数属性了 , lt 的规则是如果给定的新的分数比之前的分数小 , 就会更新成功 . gt 的规则是如果给定的新的分数比之前的分数大 , 就会更新成功

  1. [ch] : 描述了返回值要返回什么信息 . 本来 zadd 的返回值为新增成功的元素个数 , 如果我们添加了 ch , 也会返回集合中被修改的元素个数
  2. [incr] : 对集合中的分数属性进行运算 , 比如 : 加减分数等等

如果我们想要查看有序集合中的元素 , 使用 zrange 这个命令即可
语法 : zrange key start stop [withscores]

zrange key 0 -1 就是查看有序列表中所有的元素
[withscores] 的作用是也打印出元素对应的分数属性

时间复杂度 : O(log(N) + M)

O(log(N)) 是根据下标找到边界值
O(M) 是需要遍历每个元素他的成绩属性 , 也就是 stop~end 之间的元素个数

接下来我们通过一些具体操作来理解 zadd 和 zrange 这两个命令
先来看一下 zadd 的基本操作

127.0.0.1:6379> zadd key 99 甄嬛 88 沈眉庄 77 安陵容 # 向有序集合中添加元素
(integer) 3
127.0.0.1:6379> zrange key 0 -1 # 获取有序集合中所有的元素
1) "\xe5\xae\x89\xe9\x99\xb5\xe5\xae\xb9"
2) "\xe6\xb2\x88\xe7\x9c\x89\xe5\xba\x84"
3) "\xe7\x94\x84\xe5\xac\x9b"

那为什么产生乱码了呢 ?
这是因为 Redis 中存储数据是按照二进制的方式来去存储的 , 它并不负责字符的编码与解码的 , 也就是说存进去 Redis 的数据是什么 , 那取出来就是他的二进制结果
如果我们想打印中文 , 我们就需要交给 Redis 的客户端来去操作 , 退出 Redis 客户端 (Ctrl C) , 然后通过 redis-cli --raw 来去启动客户端

root@hecs-327683:~# redis-cli --raw # 利用 Redis 的客户端来去打印中文
127.0.0.1:6379> zrange key 0 -1 # 获取有序集合中的元素
安陵容
沈眉庄
甄嬛
127.0.0.1:6379> zrange key 0 -1 withscores # 打印元素以及他的成绩属性
# 默认是升序存放
安陵容
77
沈眉庄
88
甄嬛
99

那我们再模拟一下修改成绩的情况呢 ?
我们刚才也介绍了 , zadd 实际上就是如果没有 member 那就新增 , 如果 member 存在 , 那就是覆盖操作

127.0.0.1:6379> zadd key 90 安陵容 # 修改安陵容的成绩属性
0 # 0 表示没有添加新的元素
127.0.0.1:6379> zrange key 0 -1 withscores 
沈眉庄
88
# 此时修改安陵容的成绩属性 , 就导致了之前的顺序改变了
# 那 Redis 就会自动的移动元素的位置 , 保证升序排列
安陵容
90
甄嬛
99

接下来 , 我们来去模拟 zadd 的各种属性的操作
(1) nx : 只能添加新元素 , 不会影响已经存在的元素
(2) xx : 只能更新已有的元素 , 不会添加新元素

127.0.0.1:6379> zadd key nx 93 皇后 # 利用 nx 添加一条不存在的元素
1 # 返回值为 1 代表新增成功一条元素
127.0.0.1:6379> zrange key 0 -1 withscores
沈眉庄
88
安陵容
90
# 新增的元素也按照正确的顺序插入进来了
皇后
93
甄嬛
99
127.0.0.1:6379> zadd key nx 50 皇后 # nx 对已经存在的元素不会产生任何影响
0 # 返回值为 0 代表没有新增元素
127.0.0.1:6379> zrange key 0 -1 withscores
沈眉庄
88
安陵容
# 皇后的成绩修改失败 -> nx 只能插入不存在的数据
90
皇后
93
甄嬛
99
------
127.0.0.1:6379> zadd key xx 50 皇后 # 利用 xx 来去修改皇后的成绩
0 # 返回值为 0 代表没有添加元素
127.0.0.1:6379> zrange key 0 -1 withscores
# 此时皇后的成绩修改成功
皇后
50
沈眉庄
88
安陵容
90
甄嬛
99
127.0.0.1:6379> zadd key xx 88 端妃 # xx 不能插入新的数据
0 # 返回值为 0 代表没有添加元素
127.0.0.1:6379> zrange key 0 -1 withscores
# 此时端妃没插入进来 -> xx 只能进行更新操作
皇后
50
沈眉庄
88
安陵容
90
甄嬛
99

(3) 默认情况下 zadd 命令返回的是添加成功的元素个数 , 但是我们如果指定 ch 这个选项之后 , 返回值就还会包含本次更新的元素的个数

127.0.0.1:6379> zadd key ch 80 皇后 # 修改皇后的成绩 , 添加 ch 选项表示返回值也包括了更新元素的个数
1 # 成功更新一条数据
127.0.0.1:6379> zrange key 0 -1 withscores
# 此时皇后的数据也更新成功了
皇后
80
沈眉庄
88
安陵容
90
甄嬛
99

(4) incr 的作用是将元素的分数加上指定的分数 (就相当于更新操作) , 但是如果使用 incr , 那此时只能指定一个元素和一个分数

127.0.0.1:6379> zadd key incr 10 皇后 # 对皇后的成绩进行 +10
90 # 返回值代表添加之后的成绩
127.0.0.1:6379> zrange key 0 -1 withscores
沈眉庄
88
# 如果成绩相同 , 那就按照元素的字典序进行排列
安陵容
90
# 此时皇后的成绩添加成功
皇后
90
甄嬛
99

2.2 zcard

zcard 的作用是用来获取有序集合中的元素个数
语法 : zcard key
时间复杂度 : O(1)

127.0.0.1:6379> zrange key 0 -1 withscores
# 一共有四个元素
沈眉庄
88
安陵容
90
皇后
90
甄嬛
99
127.0.0.1:6379> zcard key # 获取有序集合中的元素个数
4

2.3 zcount

zcount 的作用是按照分数区间来进行筛选 , 也就是说筛选 [min , max] 之间符合的元素个数
语法 : zcount key min max

min 和 max 默认是闭区间 , 如果我们想排除边界值 , 我们就需要在 min 和 max 的左侧加上括号 (比较奇葩 , 大家仔细观察)

时间复杂度 : O(logN)

zcount 需要制定 min 和 max 分数区间的 , 那就需要先根据 min 找到对应的元素 , 再根据 max 找到对应的元素 , 这两个操作都是 logN 的操作 , 那在这两个元素之间所有的元素都是符合条件的元素

127.0.0.1:6379> zrange key 0 -1 withscores
沈眉庄
88
安陵容
90
皇后
90
甄嬛
99
# 反人类 !!!
127.0.0.1:6379> zcount key 90 99 # 查询分数在 [90,99] 之间的元素个数
3
127.0.0.1:6379> zcount key (90 99 # 查询分数在 (90,99] 之间的元素个数
1
127.0.0.1:6379> zcount key 90 (99 # 查询分数在 [90,99) 之间的元素个数
2
127.0.0.1:6379> zcount key (88 (99 # 查询分数在 (90,99) 之间的元素个数
2

那 min 和 max 也是可以写成浮点数的 , 那在浮点数中有存在两个特殊的数值

  1. inf : 无穷大
  2. -inf : 负无穷大

那在 Zset 中分数也是支持使用 inf 和 -inf 的

127.0.0.1:6379> zcount key -inf inf # 查询分数在 [-∞,+∞] 之间的元素个数
4

2.4 zrevrange、zrangebyscore

zrevrange 是按照成绩降序打印
语法 : zrevrange key start stop [withscores]
时间复杂度 : O(log(N) + M)

127.0.0.1:6379> zrevrange key 0 -1 withscores # 降序打印有序集合中的元素
# 此时元素都按照降序排列了
甄嬛
99
皇后
90
安陵容
90
沈眉庄
88

zrangebyscore 是按照成绩来去查找元素的 , 查找成绩在 [min , max] 区间内的元素
语法 : zrangebyscore key min max [withscores]

127.0.0.1:6379> zrangebyscore key 90 100 withscores # 查询成绩在 [90,100] 之间的元素
安陵容
90
皇后
90
甄嬛
99

但是这个命令比较遗憾 , 在 6.2.0 之后会被废弃 , 会被合并到 zrange 中去使用

2.5 zpopmax、zpopmin

zpopmax 的作用是删除并返回成绩最高的 count 个元素
语法 : zpopmax key [count]

其实可以理解为删除堆顶元素 , 也就是 pop() 方法

返回值就是被删除的元素 (member + score)
时间复杂度 : O(log(N) * M)

N 是有序集合的元素个数 , O(log(N)) 指的是我们需要先查找成绩最高的元素
M 是要删除的元素个数 , 意思就是删除几个元素就查找几次成绩最高的元素

127.0.0.1:6379> zpopmax key # 弹出成绩最高的元素
甄嬛
99
127.0.0.1:6379> zpopmax key 2 # 弹出两个成绩最高的元素
皇后
90
安陵容
90

如果存在多个元素 , 他们的分数相同并且同时为最大值 , 那 zpopmax 删除元素的时候 , 该怎么删除呢 ?
分数虽然是主要因素 , 但是如果分数相同就会按照 member 的字典序来决定弹出的先后顺序

127.0.0.1:6379> zadd key 99 甄嬛 99 皇后 88 沈眉庄 # 构造两组成绩相同的数据
2
127.0.0.1:6379> zrange key 0 -1 withscores
沈眉庄
88
# 甄嬛和皇后的成绩相同
甄嬛
99
皇后
99
127.0.0.1:6379> zpopmax key # 删除成绩最高的元素
# 删除的是皇后 , 这是因为皇后的字典序比甄嬛高
皇后
99

zpopmin 是删除并返回成绩最小的元素
语法 : zpopmin key [count]
时间复杂度 : O(log(N) * M)

N 是有序集合的元素个数 , O(log(N)) 指的是我们需要先查找成绩最高的元素
M 是要删除的元素个数 , 意思就是删除几个元素就查找几次成绩最高的元素

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu # 向有序集合中添加元素
(integer) 3
127.0.0.1:6379> zrange key 0 -1 withscores # 查看有序集合中所有元素(默认升序排列)
1) "zhangsan"
2) "10"
3) "lisi"
4) "20"
5) "wangwu"
6) "30"
127.0.0.1:6379> zpopmin key # 删除并返回成绩最低的元素
1) "zhangsan"
2) "10"
127.0.0.1:6379> zpopmin key 2 # 删除并返回两个成绩最低的元素
1) "lisi"
2) "20"
3) "wangwu"
4) "30"

2.6 bzpopmax、bzpopmin

bzpopmax 就是阻塞版本的 zpopmax , 如果有序集合中已经有了元素 , 那就直接返回 ; 如果没有元素 , 就会产生阻塞
我们的有序集合也可以视为是一个优先级队列 , 那我们就可以实现一个带有阻塞功能的优先级队列
语法 : bzpopmax key1 [key2 …] timeout
其中 , 每个 key 都是一个有序集合 , timeout 表示超时时间 (最多阻塞多久) , 单位为 s .

timeout 可以设置小数形式 , 比如 : 0.1s 就是 100ms

它的特性也是在有序集合为空的时候开始阻塞 , 等到其他客户端插入数据就解除阻塞
时间复杂度 : O(logN)

O(logN) 需要先找到成绩最高的元素 , 然后删除

如果 bzpopmax 同时监听了多个 key , 那么他的时间复杂度依然是 O(logN) , 因为我们 bzpopmax 是删除成绩最高的元素 , 我们只需要删除这一个元素即可 , 不用乘 M

我们可以看一下演示
bzpopmax 阻塞场景.gif

那他执行的流程就是这个样子的
bzpopmax 阻塞模拟.png

其中 , 返回值包含了三部分信息

1) "key" # 表示是哪个有序集合添加了元素
# 成绩最高的元素
2) "wangwu"
3) "70"
(4.52s)

同理 , bzpopmin 的用法与 bzpopmax 用法相同
bzpopmin 阻塞场景.gif

2.7 zrank、zrevrank

zrank 的作用是返回指定元素的排名

所谓的排名 , 实际上就是下标

语法 : zrank key member
时间复杂度 : O(logN)

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu # 向有序集合中添加元素
(integer) 3
127.0.0.1:6379> zrank key lisi # 返回 lisi 所在的下标
(integer) 1
127.0.0.1:6379> zrank key wangwu # 返回 wangwu 所在的下标
(integer) 2
127.0.0.1:6379> zrank key zhangsan # 返回 zhangsan 所在的下标
(integer) 0
127.0.0.1:6379> zrank key error # 元素不存在会返回 nil
(nil)

zrevrank 也是获取到 member 的下标 , 但是他是按照降序的顺序来获取下标 (也就是反着运算下标)

127.0.0.1:6379> zrevrank key zhangsan # 降序获取 zhangsan 的下标
(integer) 2
127.0.0.1:6379> zrevrank key wangwu # 降序获取 wangwu 的下标
(integer) 0

2.8 zscore

zscore 的作用是查询指定 member 的分数
时间复杂度 : O(1)

Redis 对 zscore 的查询做了特殊的优化 , 并不再是 O(logN) 了

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu # 向有序集合中添加元素
(integer) 3
127.0.0.1:6379> zscore key zhangsan # 查询元素 zhangsan 的分数
"10"
127.0.0.1:6379> zscore key lisi # 查询元素 lisi 的分数
"20" 
127.0.0.1:6379> zscore key wangwu # 查询元素 wangwu 的分数
"30"

2.9 zrem、zremrangebyrank、zremrangebyscore

zrem 的作用是删除有序集合中指定的元素
语法 : zrem key member1 [member2 …]
时间复杂度 : O(log(N) * M)

N 指的是有序集合中的元素个数 , M 指的是要删除的元素个数
删除一个元素需要 O(logN) , 总共需要删除 M 个元素

127.0.0.1:6379> zrem key zhangsan # 删除元素 zhangsan
(integer) 1 # 返回值代表删除成功的元素个数
127.0.0.1:6379> zrem key lisi wangwu # 删除多个元素 lisi wangwu
(integer) 2

那 zremrangebyrank 的作用是按照排序结果升序删除指定下标范围的元素 , 也就是删除 [start , stop] 区间段的元素
语法 : zremrangebyrank key start stop
时间复杂度 : O(log(N) + M)

N 指的是有序集合的元素个数 , M 是 start~end 区间中的元素个数
思路就是我们先找到 start 位置的元素 , 时间复杂度为 O(logN) , 然后只需要往后再找 M 个元素即可 , 也就是 O(log(N) + M)

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu 40 zhaoliu # 向有序集合中添加元素
(integer) 4
127.0.0.1:6379> zremrangebyrank key 1 2 # 删除下标在 [1,2] 之间的元素
(integer) 2
127.0.0.1:6379> zrange key 0 -1 withscores
# 下标为 1 的 lisi 和下标为 2 的 wangwu 就被删除掉了
1) "zhangsan"
2) "10"
3) "zhaoliu"
4) "40"

zremrangebyscore 是按照成绩来去删除元素 , 在 [min , max] 区间的成绩所对应的元素就会被删除
语法 : zremrangebyscore key min max

同样可以使用 ( 来去排除边界值的

时间复杂度 : O(log(N) * M)

N 指的是有序集合中的元素个数 , M 指的是要删除的区间内的元素个数
删除一个元素需要 O(logN) , 总共需要删除 M 个元素

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu 40 zhaoliu # 向有序集合中添加元素
(integer) 4
127.0.0.1:6379> zremrangebyscore key 20 30 # 删除成绩在 [20,30] 区间范围的元素
(integer) 2
127.0.0.1:6379> zrange key 0 -1
# 成绩为 20 的 lisi 和成绩为 30 的 wangwu 就被删除了
1) "zhangsan"
2) "zhaoliu"

2.10 zincrby

zincrby 为指定的元素的分数进行修改
语法 : zincrby key increment member

127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu 40 zhaoliu # 向有序集合中添加元素
(integer) 4
127.0.0.1:6379> zincrby key 15 zhangsan # 对 zhangsan 的成绩 + 15 分
"25"
127.0.0.1:6379> zrange key 0 -1 withscores
1) "lisi"
2) "20"
# 此时有序集合的顺序也随之改变了
3) "zhangsan"
4) "25"
5) "wangwu"
6) "30"
7) "zhaoliu"
8) "40"
127.0.0.1:6379> zincrby key -15 zhangsan # 对 zhangsan 的成绩 - 15 分
"10"
127.0.0.1:6379> zrange key 0 -1 withscores
# 此时有序集合的顺序也随之改变了
1) "zhangsan"
2) "10"
3) "lisi"
4) "20"
5) "wangwu"
6) "30"
7) "zhaoliu"
8) "40"
127.0.0.1:6379> zincrby key 0.5 zhangsan # zincrby 也可以加减小数
"10.5"
127.0.0.1:6379> zrange key 0 -1 withscores
# zhangsan 的成绩已经 + 0.5 了
1) "zhangsan"
2) "10.5"
3) "lisi"
4) "20"
5) "wangwu"
6) "30"
7) "zhaoliu"
8) "40"

2.11 集合间操作

我们之前学习过 set 类型 , 他也存在集合间操作 , 分别为 : sinter、sunion、sdiff
那相对应的命令就是 zinter、zunion、zdiff ?
并不是 , 这三个命令在 Redis 6.2 之后才引进 , 我们使用的是 Redis 5 系列 , 先不去了解这几个命令
在 Zset 中提供了两个集合间操作

  1. zinterstore : 求交集 , 结果保存到另外一个集合中
  2. zunionstore : 求并集 , 结果保存到另外一个集合中
交集 : zinterstore

基本语法 : zinterstore destination numkeys key1 [key2 …]

  • destination 表示要把结果存储到 destination 中
  • numkeys 描述了后续有几个 key 参与交集运算 .

那为什么这里还需要单独描述出几个 key 参与运算呢 ?
主要是因为真正的语法中 , 后续还有很多选项 . 我们指定出 numkeys 描述出 key 的个数之后 , 就可以明确的知道后面的选项是从哪里开始的了
(我们可以类比 HTTP 的协议报文理解 , 通过 Content-Length 来描述正文的长度 , 如果 Content-Length 错误就容易产生粘包问题)

真正的语法 : zinterstore destination numkeys key1 [key2 …] [weights weight1 [weight2 …]] [aggregate <sum | min | max>]

  1. [weights weight1 [weight2 …]] : 指的是权重 (优先级) , 我们的有序集合是带有分数的 , 那每个集合他们的权重也是不同的 , 我们求交集既需要考虑相同的元素 , 又需要考虑对应集合的权重 . 权重和元素都相同才算是交集
  2. [aggregate <sum | min | max>] :

比如 :
key1 :

zhangsan10
lisi20
wangwu30

key2 :

zhangsan15
lisi25
zhaoliu30

在有序集合中 , member 才是主体 , score 只是用来辅助排序的 , 因此在进行比较相同的时候 , 只要 member 相同即可 , 不要求 score 相同
所以最终的交集就是 : zhangsan、lisi
如果 member 相同 , score 不同 , 那最后的 score 怎么算 ?
这就需要我们的 [aggregate <sum | min | max>] 来运算了 , 以 zhangsan 为例

  • sum : 求和 , 最终的 score 为 10 + 15 = 25
  • min : 取最小值 , 最终的 score 为 min(10,25) = 10
  • max : 求最大值 , 最终的 score 为 max(10,25) = 25

那我们通过命令来去理解一下
先来看最基础的版本

# 此时 , zhangsan 和 lisi 为交集结果
# 元素相同即可 , 不要求成绩相同
127.0.0.1:6379> zadd key1 10 zhangsan 20 lisi 30 wangwu
(integer) 3
127.0.0.1:6379> zadd key2 15 zhangsan 25 lisi 35 zhaoliu
(integer) 3
127.0.0.1:6379> zinterstore key3 2 key1 key2 # 获取 key1 和 key2 中的交集结果保存到 key3 中
(integer) 2 # 返回值代表交集元素的个数
127.0.0.1:6379> zrange key3 0 -1 withscores
1) "zhangsan"
2) "25" # 默认的就是将交集的 score 相加
3) "lisi"
4) "45"

然后我们模拟一下权重的效果

# 此时 , zhangsan 和 lisi 为交集结果
# 元素相同即可 , 不要求成绩相同
127.0.0.1:6379> zadd key1 10 zhangsan 20 lisi 30 wangwu
(integer) 3
127.0.0.1:6379> zadd key2 15 zhangsan 25 lisi 35 zhaoliu
(integer) 3# 将 key1 的权重设置为 2 , 将 key2 的权重设置为 3
# 也就是 key1 中每个成绩 *2 , key2 中的每个成绩 *3
127.0.0.1:6379> zinterstore key4 2 key1 key2 weights 2 3 
(integer) 2
127.0.0.1:6379> zrange key4 0 -1 withscores
1) "zhangsan"
2) "65" # 10*2+15*3=65
3) "lisi"
4) "115" # 20*2+25*3=115

我们再指定一下 score 的计算方式

# 此时 , zhangsan 和 lisi 为交集结果
# 元素相同即可 , 不要求成绩相同
127.0.0.1:6379> zadd key1 10 zhangsan 20 lisi 30 wangwu
(integer) 3
127.0.0.1:6379> zadd key2 15 zhangsan 25 lisi 35 zhaoliu
(integer) 3# 将 key1 和 key2 的交集保存到 key5 中
# score 的计算方式为 max(key1.score,key2.score)
127.0.0.1:6379> zinterstore key5 2 key1 key2 aggregate max
(integer) 2
127.0.0.1:6379> zrange key5 0 -1 withscores
1) "zhangsan"
2) "15" # key2 中的 score 更高
3) "lisi"
4) "25" # key2 中的 score 更高
# 将 key1 和 key2 的交集保存到 key6 中
# score 的计算方式为 min(key1.score,key2.score)
127.0.0.1:6379> zinterstore key6 2 key1 key2 aggregate min
(integer) 2
127.0.0.1:6379> zrange key6 0 -1 withscores
1) "zhangsan"
2) "10" # key1 中的 score 更低
3) "lisi" 
4) "20" # key1 中的 score 更低

zinterstore 的时间复杂度为 O(N * K) + O(M * log(M))
我们来看一下官方文档对于时间复杂度的解释 : https://redis.io/commands/zinterstore
image.png
zinterstore 时间复杂度化简.png

时间复杂度我们不需要刻意记忆 , 我们只需要通过时间复杂度来去更好的理解命令即可

并集 : zunionstore

语法 : zunionstore destination numkeys key1 [key2 …] [weights weight1 [weight2 …]] [aggregate <sum | min | max>]
里面的用法和选项跟 zinterstore 类似 , 我们直接通过命令来了解它的用法

# 并集是 zhangsan、lisi、wangwu、zhaoliu
127.0.0.1:6379> zadd key1 10 zhangsan 20 lisi 30 wangwu
(integer) 3
127.0.0.1:6379> zadd key2 15 zhangsan 25 lisi 35 zhaoliu
(integer) 3
127.0.0.1:6379> zunionstore key3 2 key1 key2
(integer) 4 # 返回值表示交集元素的个数
127.0.0.1:6379> zrange key3 0 -1 withscores
# 顺序按照成绩重新进行升序排列
1) "zhangsan"
2) "25" # 默认是 sum(key1.score,key2.score)
3) "wangwu"
4) "30"
5) "zhaoliu"
6) "35"
7) "lisi"
8) "45"
# 将 key1 的权重设置成 0.5 , 将 key2 的权重设置成 0.6
# 也就是 key1 中的每个元素 *0.5 , key2 中的每个元素 *0.6
127.0.0.1:6379> zunionstore key4 2 key1 key2 weights 0.5 0.6
(integer) 4
127.0.0.1:6379> zrange key4 0 -1 withscores
1) "zhangsan"
2) "14" # 10*0.5+15*0.6=14
3) "wangwu"
4) "15" # 30*0.5=15
5) "zhaoliu"
6) "21" # 35*0.6=21
7) "lisi"
8) "25" # 20*0.5+25*0.6=25
# 将 key1 和 key2 的并集保存到 key5 中
# score 的计算方式为 min(key1.score,key2.score)
127.0.0.1:6379> zunionstore key5 2 key1 key2 aggregate min
(integer) 4
127.0.0.1:6379> zrange key5 0 -1 withscores
1) "zhangsan"
2) "10" # min(10,15)=10
3) "lisi"
4) "20" # min(20,25)=20
5) "wangwu"
6) "30" #min(30)=30
7) "zhaoliu"
8) "35" #min(35)=35
# 将 key1 和 key2 的并集保存到 key6 中
# score 的计算方式为 max(key1.score,key2.score)
127.0.0.1:6379> zunionstore key6 2 key1 key2 aggregate max
(integer) 4
127.0.0.1:6379> zrange key6 0 -1 withscores
1) "zhangsan"
2) "15" # max(10,15)=15
3) "lisi"
4) "25" # max(20,25)=25
5) "wangwu"
6) "30" # max(30)=30
7) "zhaoliu"
8) "35" # max(35)=35

小结

在这里插入图片描述

三 . 内部编码

有序集合内部的编码方式有两种 :

  1. 如果有序集合中的元素个数较少 , 或者单个元素体积不大 , 就会使用 ziplist 来去存储
  2. 如果有序集合中的元素个数较多 , 或者单个元素体积非常大 , 就会使用 skiplist (跳表) 来去存储

跳表就类似一个二叉搜索树 , 他查询元素的时间复杂度是 O(logN) . 但是跳表更适合按照范围来去获取元素

# 有序集合中的元素个数较少 && 单个元素体积不大 -> ziplist
127.0.0.1:6379> zadd key 10 zhangsan 20 lisi 30 wangwu 
(integer) 3
127.0.0.1:6379> object encoding key
"ziplist"
# 有序集合中的元素个数较大 || 单个元素体积比较大 -> skiplist
127.0.0.1:6379> zadd key 40 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
(integer) 1
127.0.0.1:6379> object encoding key
"skiplist"

具体的跳表的相关细节 , 我们之后专门来去给大家介绍

四 . 应用场景 : 排行榜

关于排行榜 , 也有很多具体的说法 , 比如 : 微博热搜、游戏天梯排行、成绩排行 …
排行榜非常重要的要素就是用来排行的分数是实时变化的 , 那使用 Zset 来完成排行榜是非常简单的 .
比如游戏天梯排行 , 我们只需要把玩家信息和对应分数放到有序集合中即可 , 自动就形成了排行榜 . 我们随时可以按照排行 (下标) 或者按照分数进行范围查询来去生成排行榜 .
而且随着分数发生变化 , 可以使用 zincrby 来去修改分数 , 并且最终的排行顺序也可以自动调整 (O(logN) 的时间复杂度)

但是有的排行榜也会更复杂一些 , 比如微博热搜这种 , 他不只与浏览量有关 , 还需要考虑点赞量、转发量、评论量等等因素 , 那通过 Zset 实现也很简单 , 可以通过权重分配的方式 , 通过 zinterstore / zunionstore 来去计算热度 .
我们可以将浏览量、点赞量、评论量、转发量所对应的数值分别存放到不同的有序集合中 , member 就是微博的 ID , score 就是各自维度所对应的数值 , 我们通过 zinterstore / zunionstore 就可以把上述有序集合按照约定好的权重去进行集合间运算即可 , 那最后得到的结果集合就是我们所需要的热度 .


今天关于 zset 的分享就结束了 , 如果对你有帮助的话 , 还请一键三连~
在这里插入图片描述

这篇关于Redis Zset 类型:Score 属性在数据排序中的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135630

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外