yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理

本文主要是介绍yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适用于广泛的应用领域。

本篇为yolov5部署在RK3588的教程。

一、yolov5训练数据

请选择v5.0版本:Releases · ultralytics/yolov5 (github.com)

训练方法请按照官方的READEME文件进行。 

转换前将model/yolo.py的 Detect 类下的

    def forward(self, x):z = []  # inference outputfor i in range(self.nl):if os.getenv('RKNN_model_hack', '0') != '0':z.append(torch.sigmoid(self.m[i](x[i])))continuex[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))if os.getenv('RKNN_model_hack', '0') != '0':return zreturn x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

修改为:

    def forward(self, x):z = []for i in range(self.nl):x[i] = self.m[i](x[i])return x

但在训练阶段请勿修改。

接着将训练好的best.pt放在工程文件夹下,使用yolov5工程中的export.py将其转换为onnx模型

python export.py --weights best.pt

二、下载RKNN-Toolkit2

1、下面的请在 Ubuntu下进行,创建一个Python环境

conda create -n rknn152 python=3.8

激活环境rknn152

conda activate rknn152

拉取rockchip-linux/rknn-toolkit2 at v1.5.2 (github.com)仓库。我是直接下载的1.5.2版本的zip包。

git clone git@github.com:rockchip-linux/rknn-toolkit2.git

2、安装依赖(requirements_cp38-1.5.2.txt,在rknn-toolkit2/doc目录下)

pip install -r /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/doc/requirements_cp38-1.5.2.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装rknn-toolkit2,位置在packages文件夹下面,请选择合适的版本。

pip install /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/packages/rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

3、开发环境与板子连接

sudo apt-get install adb

使用USB-typeC线连接到板子的TypeC0接口,PC端识别到虚拟机中。
在开发环境中检查是否连接成功

adb devices

如果连接成功会返回板子的设备ID,如下:

List of devices attached
* daemon not running; starting now at tcp:5037
* daemon started successfully
75370ea69f64098d    device

三、onnx转rknn模型

在rknn-toolkit2工程文件夹中浏览至./examples/onnx/yolov5,将我们在yolov5工程中转换得到的best.onnx复制到该文件夹下,需要修改该文件夹下的test.py中的内容。

  • ONNX_MODEL:模型名;
  • RKNN_MODEL:转换后的rknn模型名;
  • IMG_PATH:推理的图片路径;
  • DATASET:需要打开txt文件修改,改为IMG_PATH的图片名
  • CLASSES:修改为自己数据集的类别

添加target_platform='rk3588'。

进入此目录,运行:

python test.py

如上图如此,说明没有问题,并且在该目录下会生成一个推理图片,以及转换好的rknn模型。

四、下载NPU工程

git clone https://github.com/rockchip-linux/rknpu2

将rknn_server和rknn库发送到板子上

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/rknn_server /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknn_api.so /usr/bin/

 在板子上运行rknn_server服务

adb shell 
root@ok3588:/# chmod +x /usr/bin/rknn_server
root@ok3588:/# rknn_server &
[1] 6932
root@ok3588:/# start rknn server, version:1.5.0 (17e11b1 build: 2023-05-18 21:43:39)
I NPUTransfer: Starting NPU Transfer Server, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:51)

在开发环境中检测rknn_server是否运行成功

(base) yuzhou@yuzhou-HP:~$ adb shell
root@ok3588:/# pgrep rknn_server
6932

有返回进程id说明运行成功。

git clone https://github.com/rockchip-linux/rknpu2.git

五、部署在rk3588上

修改include文件中的头文件postprocess.h

#define OBJ_CLASS_NUM     80  #这里的数字修改为数据集的类的个数

修改model目录下的coco_80_labels_list.txt文件,改为自己的类并保存

car

将转换后的rknn文件放在model/RK3588目录下

在model目录下放入需要推理的图片

cd /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo

编译,运行shell 

bash ./build-linux_RK3588.sh

成功后生成install目录,将文件推到我们的板子上面

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo /mydatas/

与rk3588进行交互 

adb shell 

进入我们传入文件的目录下 

cd /mydatas/rknn_yolov5_demo_Linux

使用npu加速推理

./rknn_yolov5_demo ./model/RK3588/best5s.rknn ./model/6.jpg

 将生成的图片拉取到本地来

adb pull /mydatas/rknn_yolov5_demo_Linux/6out.jpg /home/yuzhou/rknn-toolkit2/examples/onnx/yolov5_rk3588_demo/test

参考文章

瑞芯微RK3588开发板:虚拟机yolov5模型转化、开发板上python脚本调用npu并部署 全流程_yolov5模型在rk3588-CSDN博客

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上——从训练到部署全过程_yolov5 rknn-CSDN博客

瑞芯微rk3588部署yolov5模型实战_在rk3588上部署yolov5-CSDN博客

yolov5训练并生成rknn模型以及3588平台部署_yolov5 在rk3588上的部署-CSDN博客

这篇关于yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/844905

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定