yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理

本文主要是介绍yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适用于广泛的应用领域。

本篇为yolov5部署在RK3588的教程。

一、yolov5训练数据

请选择v5.0版本:Releases · ultralytics/yolov5 (github.com)

训练方法请按照官方的READEME文件进行。 

转换前将model/yolo.py的 Detect 类下的

    def forward(self, x):z = []  # inference outputfor i in range(self.nl):if os.getenv('RKNN_model_hack', '0') != '0':z.append(torch.sigmoid(self.m[i](x[i])))continuex[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))if os.getenv('RKNN_model_hack', '0') != '0':return zreturn x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

修改为:

    def forward(self, x):z = []for i in range(self.nl):x[i] = self.m[i](x[i])return x

但在训练阶段请勿修改。

接着将训练好的best.pt放在工程文件夹下,使用yolov5工程中的export.py将其转换为onnx模型

python export.py --weights best.pt

二、下载RKNN-Toolkit2

1、下面的请在 Ubuntu下进行,创建一个Python环境

conda create -n rknn152 python=3.8

激活环境rknn152

conda activate rknn152

拉取rockchip-linux/rknn-toolkit2 at v1.5.2 (github.com)仓库。我是直接下载的1.5.2版本的zip包。

git clone git@github.com:rockchip-linux/rknn-toolkit2.git

2、安装依赖(requirements_cp38-1.5.2.txt,在rknn-toolkit2/doc目录下)

pip install -r /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/doc/requirements_cp38-1.5.2.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装rknn-toolkit2,位置在packages文件夹下面,请选择合适的版本。

pip install /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/packages/rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

3、开发环境与板子连接

sudo apt-get install adb

使用USB-typeC线连接到板子的TypeC0接口,PC端识别到虚拟机中。
在开发环境中检查是否连接成功

adb devices

如果连接成功会返回板子的设备ID,如下:

List of devices attached
* daemon not running; starting now at tcp:5037
* daemon started successfully
75370ea69f64098d    device

三、onnx转rknn模型

在rknn-toolkit2工程文件夹中浏览至./examples/onnx/yolov5,将我们在yolov5工程中转换得到的best.onnx复制到该文件夹下,需要修改该文件夹下的test.py中的内容。

  • ONNX_MODEL:模型名;
  • RKNN_MODEL:转换后的rknn模型名;
  • IMG_PATH:推理的图片路径;
  • DATASET:需要打开txt文件修改,改为IMG_PATH的图片名
  • CLASSES:修改为自己数据集的类别

添加target_platform='rk3588'。

进入此目录,运行:

python test.py

如上图如此,说明没有问题,并且在该目录下会生成一个推理图片,以及转换好的rknn模型。

四、下载NPU工程

git clone https://github.com/rockchip-linux/rknpu2

将rknn_server和rknn库发送到板子上

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/rknn_server /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknn_api.so /usr/bin/

 在板子上运行rknn_server服务

adb shell 
root@ok3588:/# chmod +x /usr/bin/rknn_server
root@ok3588:/# rknn_server &
[1] 6932
root@ok3588:/# start rknn server, version:1.5.0 (17e11b1 build: 2023-05-18 21:43:39)
I NPUTransfer: Starting NPU Transfer Server, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:51)

在开发环境中检测rknn_server是否运行成功

(base) yuzhou@yuzhou-HP:~$ adb shell
root@ok3588:/# pgrep rknn_server
6932

有返回进程id说明运行成功。

git clone https://github.com/rockchip-linux/rknpu2.git

五、部署在rk3588上

修改include文件中的头文件postprocess.h

#define OBJ_CLASS_NUM     80  #这里的数字修改为数据集的类的个数

修改model目录下的coco_80_labels_list.txt文件,改为自己的类并保存

car

将转换后的rknn文件放在model/RK3588目录下

在model目录下放入需要推理的图片

cd /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo

编译,运行shell 

bash ./build-linux_RK3588.sh

成功后生成install目录,将文件推到我们的板子上面

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo /mydatas/

与rk3588进行交互 

adb shell 

进入我们传入文件的目录下 

cd /mydatas/rknn_yolov5_demo_Linux

使用npu加速推理

./rknn_yolov5_demo ./model/RK3588/best5s.rknn ./model/6.jpg

 将生成的图片拉取到本地来

adb pull /mydatas/rknn_yolov5_demo_Linux/6out.jpg /home/yuzhou/rknn-toolkit2/examples/onnx/yolov5_rk3588_demo/test

参考文章

瑞芯微RK3588开发板:虚拟机yolov5模型转化、开发板上python脚本调用npu并部署 全流程_yolov5模型在rk3588-CSDN博客

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上——从训练到部署全过程_yolov5 rknn-CSDN博客

瑞芯微rk3588部署yolov5模型实战_在rk3588上部署yolov5-CSDN博客

yolov5训练并生成rknn模型以及3588平台部署_yolov5 在rk3588上的部署-CSDN博客

这篇关于yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844905

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima