算法沉淀 —— 动态规划篇(斐波那契数列模型)

2024-03-25 07:52

本文主要是介绍算法沉淀 —— 动态规划篇(斐波那契数列模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀 —— 动态规划篇(斐波那契数列模型)

  • 前言
  • 一、第 N 个泰波那契数
  • 二、三步问题
  • 三、使用最小花费爬楼梯
  • 四、解码方法

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为更具, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、第 N 个泰波那契数

【题目链接】:1137. 第 N 个泰波那契数
【题目】:
在这里插入图片描述
【分析】:
 题目要第n个斐波那契数,我们令dp[i]表示第i个斐波那契数。题目中以及给出了状态转移方程:dp[i] = dp[i-1] + dp[i-2] +dp[i-3]。但我们发现当i为0、1、2时显然状态转移方程错误,还会越界访问。所以我们仅需将前3个元素特殊处理,然后在从下标2开始填dp表。最后返回结果即可!
【代码实现】:

class Solution {
public:int tribonacci(int n) {if(n == 0)return 0;else if(n == 1 || n == 2)return 1;//创建dp表vector<int> dp(n + 1);//初始化dp[0] = 0, dp[1] = dp[2] = 1;//填表for(int i = 3; i <= n; i++) dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}
};

二、三步问题

【题目链接】:面试题 08.01. 三步问题

【题目】:
 三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

【分析】:
 我们可以定义dp[i]表示小孩走到i阶台阶时上楼方式的最大值。由题目可知,小孩一次可以走1阶、2阶、3阶。所以我们容易得到状态转移方程为dp[i] = dp[i-1] + dp[i-2] + dp[i-3](题目明确表示结果肯过大,记得模1000000007!!)。
 显然你以及观察到当i <=3时,状态转移方程不适应。所以我们可以提前将前3个dp表中的值进行初始化;然后在从左往右依次填表。最后返回结果即可!!

【代码实现】:

class Solution {
public:int waysToStep(int n) {//特殊处理if(n == 1)return 1;else if(n == 2)return 2;else if(n == 3)return 4;const int DEL = 1000000007;vector<int> dp(n + 1);//创建dp表,多开一个空间,让下标对应//初始化dp[1] = 1, dp[2] = 2, dp[3] = 4;//填表for(int i = 4; i <= n; i++)dp[i] = (dp[i - 1] + (dp[i - 2] + dp[i - 3]) % DEL) % DEL;return dp[n];}
};

三、使用最小花费爬楼梯

【题目链接】:746. 使用最小花费爬楼梯
【题目】:
 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。

实例:
在这里插入图片描述

【分析】
 我们可以用dp[i]变化到达下标为i的台阶时的最低花费。题目中指出,一步可选择向上爬一个或者两个台阶。所以dp[i]必然是从i-1阶或i-2阶台阶爬上来的,易得状态转移方程为dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
 显然当i为0、1时需要单独处理(处理为0)。但C++vector创建dp表时,已经将所有数据初始化为0,所以此步不需要单独实现。然后就是从下标2开始,从左往右依次填dp表了。最后返回结果即可!!

【代码实现】:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {//创建dp表int n = cost.size();vector<int> dp(n + 1);//填表for(int i = 2; i <= n; i++)dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);return dp[n];}
};

四、解码方法

【题目链接】:91. 解码方法
【题目】:
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"

要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的非空字符串 s ,请计算并返回解码方法的总数 。题目数据保证答案肯定是一个32位的整数。

【分析】:
 我们定义dp[i]表示从下标[0, i]的子字符串的解法方式总数。显然解码到dp[i]的最近一步分为:从[0,i-1] 加s[i],如果s[i]合法,此时d[i] += dp[i-1];从[0, i-2] 加s[i-1,i],如果s[i-1, i]合法,此时dp[i] += dp[i-2]。所以我们可以得到对应的状态转移方程。(具体看代码)
 显然我们需要将dp[1]、dp[2]单独处理,就不多说了。然后从左往右依次填表,最后返回结果!!
在这里插入图片描述

【代码实现】:

class Solution {
public:int numDecodings(string s) {int n = s.size();//创建dp表vector<int> dp(n);//初始化dp[0] = s[0] != '0';if(n == 1)return dp[0];if(s[0] != '0' && s[1] != '0')dp[1]++;int tmp = (s[0] - '0') * 10 + s[1] - '0';if(tmp >= 10 && tmp <= 26)dp[1]++;//填表for(int i = 2; i < n; i++){if(s[i] != '0')dp[i] += dp[i - 1];int tmp = (s[i - 1] - '0') * 10 + s[i] - '0';if(tmp >= 10 && tmp <= 26)dp[i] += dp[i - 2] ;}return dp[n - 1];}
};

这篇关于算法沉淀 —— 动态规划篇(斐波那契数列模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844324

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G