算法沉淀 —— 动态规划篇(斐波那契数列模型)

2024-03-25 07:52

本文主要是介绍算法沉淀 —— 动态规划篇(斐波那契数列模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀 —— 动态规划篇(斐波那契数列模型)

  • 前言
  • 一、第 N 个泰波那契数
  • 二、三步问题
  • 三、使用最小花费爬楼梯
  • 四、解码方法

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为更具, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、第 N 个泰波那契数

【题目链接】:1137. 第 N 个泰波那契数
【题目】:
在这里插入图片描述
【分析】:
 题目要第n个斐波那契数,我们令dp[i]表示第i个斐波那契数。题目中以及给出了状态转移方程:dp[i] = dp[i-1] + dp[i-2] +dp[i-3]。但我们发现当i为0、1、2时显然状态转移方程错误,还会越界访问。所以我们仅需将前3个元素特殊处理,然后在从下标2开始填dp表。最后返回结果即可!
【代码实现】:

class Solution {
public:int tribonacci(int n) {if(n == 0)return 0;else if(n == 1 || n == 2)return 1;//创建dp表vector<int> dp(n + 1);//初始化dp[0] = 0, dp[1] = dp[2] = 1;//填表for(int i = 3; i <= n; i++) dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}
};

二、三步问题

【题目链接】:面试题 08.01. 三步问题

【题目】:
 三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

【分析】:
 我们可以定义dp[i]表示小孩走到i阶台阶时上楼方式的最大值。由题目可知,小孩一次可以走1阶、2阶、3阶。所以我们容易得到状态转移方程为dp[i] = dp[i-1] + dp[i-2] + dp[i-3](题目明确表示结果肯过大,记得模1000000007!!)。
 显然你以及观察到当i <=3时,状态转移方程不适应。所以我们可以提前将前3个dp表中的值进行初始化;然后在从左往右依次填表。最后返回结果即可!!

【代码实现】:

class Solution {
public:int waysToStep(int n) {//特殊处理if(n == 1)return 1;else if(n == 2)return 2;else if(n == 3)return 4;const int DEL = 1000000007;vector<int> dp(n + 1);//创建dp表,多开一个空间,让下标对应//初始化dp[1] = 1, dp[2] = 2, dp[3] = 4;//填表for(int i = 4; i <= n; i++)dp[i] = (dp[i - 1] + (dp[i - 2] + dp[i - 3]) % DEL) % DEL;return dp[n];}
};

三、使用最小花费爬楼梯

【题目链接】:746. 使用最小花费爬楼梯
【题目】:
 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。

实例:
在这里插入图片描述

【分析】
 我们可以用dp[i]变化到达下标为i的台阶时的最低花费。题目中指出,一步可选择向上爬一个或者两个台阶。所以dp[i]必然是从i-1阶或i-2阶台阶爬上来的,易得状态转移方程为dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
 显然当i为0、1时需要单独处理(处理为0)。但C++vector创建dp表时,已经将所有数据初始化为0,所以此步不需要单独实现。然后就是从下标2开始,从左往右依次填dp表了。最后返回结果即可!!

【代码实现】:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {//创建dp表int n = cost.size();vector<int> dp(n + 1);//填表for(int i = 2; i <= n; i++)dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);return dp[n];}
};

四、解码方法

【题目链接】:91. 解码方法
【题目】:
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

'A' -> "1"
'B' -> "2"
...
'Z' -> "26"

要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的非空字符串 s ,请计算并返回解码方法的总数 。题目数据保证答案肯定是一个32位的整数。

【分析】:
 我们定义dp[i]表示从下标[0, i]的子字符串的解法方式总数。显然解码到dp[i]的最近一步分为:从[0,i-1] 加s[i],如果s[i]合法,此时d[i] += dp[i-1];从[0, i-2] 加s[i-1,i],如果s[i-1, i]合法,此时dp[i] += dp[i-2]。所以我们可以得到对应的状态转移方程。(具体看代码)
 显然我们需要将dp[1]、dp[2]单独处理,就不多说了。然后从左往右依次填表,最后返回结果!!
在这里插入图片描述

【代码实现】:

class Solution {
public:int numDecodings(string s) {int n = s.size();//创建dp表vector<int> dp(n);//初始化dp[0] = s[0] != '0';if(n == 1)return dp[0];if(s[0] != '0' && s[1] != '0')dp[1]++;int tmp = (s[0] - '0') * 10 + s[1] - '0';if(tmp >= 10 && tmp <= 26)dp[1]++;//填表for(int i = 2; i < n; i++){if(s[i] != '0')dp[i] += dp[i - 1];int tmp = (s[i - 1] - '0') * 10 + s[i] - '0';if(tmp >= 10 && tmp <= 26)dp[i] += dp[i - 2] ;}return dp[n - 1];}
};

这篇关于算法沉淀 —— 动态规划篇(斐波那契数列模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844324

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.