改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

本文主要是介绍改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其思想来源于鸟群寻食和鱼群捕食等自然现象。PSO算法通过模拟群体智能的行为,以一种启发式的方式寻找最优解,因此具有全局搜索能力强、收敛速度快等优点。本文将介绍标准粒子群算法的基本流程、算法实现和应用场景等方面。

完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

一、算法实现

1.1 标准的粒子群算法

文献[1]在更新粒子的速度和位置时,需要考虑每个粒子自身的经验和整个群体的经验。具体的更新公式如下:

v i , j = w v i , j + c 1 r 1 ( p b e s t i , j − x i , j ) + c 2 r 2 ( g b e s t j − x i , j ) (1) v_{i,j}=wv_{i,j}+c_1r_1(pbest_{i,j}-x_{i,j})+c_2r_2(gbest_{j}-x_{i,j}) \tag{1} vi,j=wvi,j+c1r1(pbesti,jxi,j)+c2r2(gbestjxi,j)(1)

x i , j = x i , j + v i , j (2) x_{i,j}=x_{i,j}+v_{i,j} \tag{2} xi,j=xi,j+vi,j(2)

其中, v i , j v_{i,j} vi,j表示粒子 i i i在第 j j j维的速度, x i , j x_{i,j} xi,j表示粒子 i i i在第 j j j维的位置, p b e s t i , j pbest_{i,j} pbesti,j表示粒子 i i i在第 j j j维的个体最优解, g b e s t j gbest_{j} gbestj表示整个群体在第 j j j维的全局最优解, w w w表示惯性权重, c 1 c_1 c1 c 2 c_2 c2分别表示个体学习因子和社会学习因子, r 1 r_1 r1 r 2 r_2 r2分别表示0到1之间的随机数。

1.2、粒子速度更新公式的改进

粒子速度更新公式的改进
文献【2】提出一种均值粒子群优化(MeanPSO)算法,即利用个体最优和群体最优的线性组合 ( p h e s t i j + g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}+{\mathrm{gbest}}_{j}}{2}}) (2phestij+gbestj) ( p h e s t i j − g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}) (2phestijgbestj)分别替换
MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解。

具体对(1)式的更新公式如下:

v i j ( t + 1 ) = w v i j ( t ) + c 1 r 1 ( p h e s t i j − g b e s t j 2 − x i j ( t ) ) + c 2 r 2 ( p b e s t i − g b e s t d 2 − x i j ( t ) ) (3) v_{ij}(t+1)=w v_{i j}(t)+c_{1}r_{1}\left({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}\,-x_{i j}(t)\right)+c_{2}r_{2}\left({\frac{{\mathrm{pbest}}_{i }-{\mathrm{gbest}}_{d}}{2}}\,-x_{i j}(t)\right) \tag{3} vij(t+1)=wvij(t)+c1r1(2phestijgbestjxij(t))+c2r2(2pbestigbestdxij(t))(3)

MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解.

二、仿真实验及结果分析

为验证文献[3]所提算法MPSO有效性,将文献[3]MPSO算法与粒子群优化(PSO)算法【1】、均值粒子群优化(MeanPSO)算法【2】、一种基于自适应策略的改进粒子群优化(MPSO)算法【3】、改进粒子群算法(IPSO)【4】,一种多群自适应协同粒子群优化算法(MSCPSO)算法[5]、社会学习粒子群优化(SL-PSO)算法【6】、一种动态调整惯性权重的混合粒子群算法【7】,一种结合自适应惯性权重的混合粒子群算法【8】进行对比测试,使用Matlab软件进行仿真,不同PSO算法设置相同种群规模N = 30、最大迭代次数 T max ⁡ = 500 T_{\max}=500 Tmax=500和变量维数D=30。

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm
在这里插入图片描述
在这里插入图片描述

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

【1】KENNEDY J,EBERHART R C.Particle swarm optimizationC//Proceedings of the lEEE International Conference on Neural Networks,1995:1942-1948
【2】 Deep K, Bansal J C. Mean particle swarm optimisation for function optimisation[J]. International Journal of Computational Intelligence Studies, 2009, 1(1): 72-92.
【3】Hao Liu, Xu-Wei Zhang , Liang-Ping Tu. A modified particle swarm optimization using adaptive strategy[J]. Expert Systems With Applications, 2020, 152: 113353.
【4】Y. Shi, R. Eberhart. A modified particle swarm optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, 4: 69-73.
【5】Jiuzhong Zhang, Xueming Ding.A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization[J].Engineering Applications of Artificial Intelligence,2021,24(6),958-967.
【6】Ran Cheng, Yaochu Jin. A social learning particle swarm optimization algorithm for scalable optimization[J].Information Sciences, 291,43-60.
【7】胡堂清,张旭秀,曹晓月.一种动态调整惯性权重的混合粒子群算法[J].电光与控制,2020,27(06):16-21.
【8】于桂芹,李刘东,袁永峰.一种结合自适应惯性权重的混合粒子群算法[J].哈尔滨理工大学学报,2016,21(03):49-53.

这篇关于改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831927

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时