改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

本文主要是介绍改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其思想来源于鸟群寻食和鱼群捕食等自然现象。PSO算法通过模拟群体智能的行为,以一种启发式的方式寻找最优解,因此具有全局搜索能力强、收敛速度快等优点。本文将介绍标准粒子群算法的基本流程、算法实现和应用场景等方面。

完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

一、算法实现

1.1 标准的粒子群算法

文献[1]在更新粒子的速度和位置时,需要考虑每个粒子自身的经验和整个群体的经验。具体的更新公式如下:

v i , j = w v i , j + c 1 r 1 ( p b e s t i , j − x i , j ) + c 2 r 2 ( g b e s t j − x i , j ) (1) v_{i,j}=wv_{i,j}+c_1r_1(pbest_{i,j}-x_{i,j})+c_2r_2(gbest_{j}-x_{i,j}) \tag{1} vi,j=wvi,j+c1r1(pbesti,jxi,j)+c2r2(gbestjxi,j)(1)

x i , j = x i , j + v i , j (2) x_{i,j}=x_{i,j}+v_{i,j} \tag{2} xi,j=xi,j+vi,j(2)

其中, v i , j v_{i,j} vi,j表示粒子 i i i在第 j j j维的速度, x i , j x_{i,j} xi,j表示粒子 i i i在第 j j j维的位置, p b e s t i , j pbest_{i,j} pbesti,j表示粒子 i i i在第 j j j维的个体最优解, g b e s t j gbest_{j} gbestj表示整个群体在第 j j j维的全局最优解, w w w表示惯性权重, c 1 c_1 c1 c 2 c_2 c2分别表示个体学习因子和社会学习因子, r 1 r_1 r1 r 2 r_2 r2分别表示0到1之间的随机数。

1.2、粒子速度更新公式的改进

粒子速度更新公式的改进
文献【2】提出一种均值粒子群优化(MeanPSO)算法,即利用个体最优和群体最优的线性组合 ( p h e s t i j + g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}+{\mathrm{gbest}}_{j}}{2}}) (2phestij+gbestj) ( p h e s t i j − g b e s t j 2 ) ({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}) (2phestijgbestj)分别替换
MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解。

具体对(1)式的更新公式如下:

v i j ( t + 1 ) = w v i j ( t ) + c 1 r 1 ( p h e s t i j − g b e s t j 2 − x i j ( t ) ) + c 2 r 2 ( p b e s t i − g b e s t d 2 − x i j ( t ) ) (3) v_{ij}(t+1)=w v_{i j}(t)+c_{1}r_{1}\left({\frac{{\mathrm{phest}}_{i j}-{\mathrm{gbest}}_{j}}{2}}\,-x_{i j}(t)\right)+c_{2}r_{2}\left({\frac{{\mathrm{pbest}}_{i }-{\mathrm{gbest}}_{d}}{2}}\,-x_{i j}(t)\right) \tag{3} vij(t+1)=wvij(t)+c1r1(2phestijgbestjxij(t))+c2r2(2pbestigbestdxij(t))(3)

MeanPSO算法中粒子搜索区间更广,使得算法在进化前期有更大可能搜索到全局最优解.

二、仿真实验及结果分析

为验证文献[3]所提算法MPSO有效性,将文献[3]MPSO算法与粒子群优化(PSO)算法【1】、均值粒子群优化(MeanPSO)算法【2】、一种基于自适应策略的改进粒子群优化(MPSO)算法【3】、改进粒子群算法(IPSO)【4】,一种多群自适应协同粒子群优化算法(MSCPSO)算法[5]、社会学习粒子群优化(SL-PSO)算法【6】、一种动态调整惯性权重的混合粒子群算法【7】,一种结合自适应惯性权重的混合粒子群算法【8】进行对比测试,使用Matlab软件进行仿真,不同PSO算法设置相同种群规模N = 30、最大迭代次数 T max ⁡ = 500 T_{\max}=500 Tmax=500和变量维数D=30。

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm
在这里插入图片描述
在这里插入图片描述

三、完整代码下载方式

(1)改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm

【1】KENNEDY J,EBERHART R C.Particle swarm optimizationC//Proceedings of the lEEE International Conference on Neural Networks,1995:1942-1948
【2】 Deep K, Bansal J C. Mean particle swarm optimisation for function optimisation[J]. International Journal of Computational Intelligence Studies, 2009, 1(1): 72-92.
【3】Hao Liu, Xu-Wei Zhang , Liang-Ping Tu. A modified particle swarm optimization using adaptive strategy[J]. Expert Systems With Applications, 2020, 152: 113353.
【4】Y. Shi, R. Eberhart. A modified particle swarm optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, 4: 69-73.
【5】Jiuzhong Zhang, Xueming Ding.A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization[J].Engineering Applications of Artificial Intelligence,2021,24(6),958-967.
【6】Ran Cheng, Yaochu Jin. A social learning particle swarm optimization algorithm for scalable optimization[J].Information Sciences, 291,43-60.
【7】胡堂清,张旭秀,曹晓月.一种动态调整惯性权重的混合粒子群算法[J].电光与控制,2020,27(06):16-21.
【8】于桂芹,李刘东,袁永峰.一种结合自适应惯性权重的混合粒子群算法[J].哈尔滨理工大学学报,2016,21(03):49-53.

这篇关于改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831927

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份