SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

本文主要是介绍SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

GWO-TCN-BiGRU-Attention是一个结合了灰狼算法(GWO)、时间卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的复杂模型,用于多变量时间序列预测。下面将逐一解释这些组件以及它们如何协同工作:

灰狼算法(GWO):

灰狼算法是一种启发式优化算法,模拟了灰狼群体中的协作和竞争行为。

在这个模型中,GWO可能被用于优化TCN、BiGRU或Attention机制中的超参数,以找到最佳的网络配置和训练设置。

GWO通过模拟灰狼的狩猎过程(如包围、跟踪、追捕和攻击猎物)来搜索问题的最优解。

时间卷积网络(TCN):

TCN是一种具有时序特性的卷积神经网络,适用于处理时间序列数据。

它结合了因果卷积和膨胀卷积来处理时序依赖关系,特别是长期依赖。

在这个模型中,TCN可能负责从多变量时间序列中提取特征。

双向门控循环单元(BiGRU):

BiGRU是门控循环单元(GRU)的一种变体,能够同时考虑输入序列的前后信息。

GRU是一种门控循环神经网络(RNN),通过门控机制控制信息的流动,从而更好地捕捉时间序列中的长期依赖关系。

在这个模型中,BiGRU可能负责进一步处理TCN提取的特征,并捕捉这些特征之间的时序关系。

注意力机制(Attention):

注意力机制允许模型在处理序列数据时,将焦点放在与当前输出最相关的输入部分上。

在这个模型中,Attention机制可能用于对BiGRU的输出进行加权处理,以便在预测时更强调重要的特征。

通过引入注意力机制,模型可以更有效地处理复杂和多变的时间序列数据。

综上所述,GWO-TCN-BiGRU-Attention模型的工作流程可能如下:

首先,使用GWO算法优化TCN、BiGRU和Attention机制的超参数。

然后,将多变量时间序列输入到TCN中,提取出与预测任务相关的特征。

接着,将TCN的输出传递给BiGRU,进一步捕捉特征之间的时序关系。

最后,通过Attention机制对BiGRU的输出进行加权处理,生成最终的预测结果。

需要注意的是,这个模型的复杂性和计算成本可能较高,因此在实际应用中需要权衡其性能和计算资源的需求。同时,针对具体的时间序列预测任务,可能还需要对模型进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

这篇关于SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827693

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La