SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

本文主要是介绍SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

GWO-TCN-BiGRU-Attention是一个结合了灰狼算法(GWO)、时间卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的复杂模型,用于多变量时间序列预测。下面将逐一解释这些组件以及它们如何协同工作:

灰狼算法(GWO):

灰狼算法是一种启发式优化算法,模拟了灰狼群体中的协作和竞争行为。

在这个模型中,GWO可能被用于优化TCN、BiGRU或Attention机制中的超参数,以找到最佳的网络配置和训练设置。

GWO通过模拟灰狼的狩猎过程(如包围、跟踪、追捕和攻击猎物)来搜索问题的最优解。

时间卷积网络(TCN):

TCN是一种具有时序特性的卷积神经网络,适用于处理时间序列数据。

它结合了因果卷积和膨胀卷积来处理时序依赖关系,特别是长期依赖。

在这个模型中,TCN可能负责从多变量时间序列中提取特征。

双向门控循环单元(BiGRU):

BiGRU是门控循环单元(GRU)的一种变体,能够同时考虑输入序列的前后信息。

GRU是一种门控循环神经网络(RNN),通过门控机制控制信息的流动,从而更好地捕捉时间序列中的长期依赖关系。

在这个模型中,BiGRU可能负责进一步处理TCN提取的特征,并捕捉这些特征之间的时序关系。

注意力机制(Attention):

注意力机制允许模型在处理序列数据时,将焦点放在与当前输出最相关的输入部分上。

在这个模型中,Attention机制可能用于对BiGRU的输出进行加权处理,以便在预测时更强调重要的特征。

通过引入注意力机制,模型可以更有效地处理复杂和多变的时间序列数据。

综上所述,GWO-TCN-BiGRU-Attention模型的工作流程可能如下:

首先,使用GWO算法优化TCN、BiGRU和Attention机制的超参数。

然后,将多变量时间序列输入到TCN中,提取出与预测任务相关的特征。

接着,将TCN的输出传递给BiGRU,进一步捕捉特征之间的时序关系。

最后,通过Attention机制对BiGRU的输出进行加权处理,生成最终的预测结果。

需要注意的是,这个模型的复杂性和计算成本可能较高,因此在实际应用中需要权衡其性能和计算资源的需求。同时,针对具体的时间序列预测任务,可能还需要对模型进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

这篇关于SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827693

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,