Adversarial Complementary Learning for Weakly Supervised Object Localization模型解析(基于对抗互补学习的弱监督目标定位)

本文主要是介绍Adversarial Complementary Learning for Weakly Supervised Object Localization模型解析(基于对抗互补学习的弱监督目标定位),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GitHub - junkwhinger/adversarial_complementary_learning

1.背景:

学习仅使用图像级监督来定位感兴趣的对象的深度模型非常困难

早先处理方式:

根据预先训练的卷积分类网络生成类的定位图,通过用一个全局平均池化层和一个全连接层来替换分类网络的最后几层(AlexNet和VGG-16),从而聚合最后一个卷积层的特征用来生成CAM.

存在的问题:

  1. 在图像分类时过度依赖那些对分类有帮助的明显的特征
  2. 不能在图像中密集地定位目标物体的积分区域.

这两个问题主要是由于分类网络倾向于从最具辨别力的部分识别模式以进行识别,这不可避免地导致第二个问题。 例如,给定包含猫的图像,网络可以通过识别头部来识别它,而不管诸如身体和腿部的其余部分。

解决方法及弊端:

方法1:对抗性擦除(Adversarial erasing (AE))方法来发现整体对象区域,对抗擦除,学习到部分特征,我把这个部分擦除掉,再训练一个新的网络,从而使用多个网络学习到全部特征。但这种方式网络太多;

方法2:.随机遮挡图像的一部分,强行让网络学习完整的特征。但这种随机的方式,不能保证每次能学习到新的特征

2.本文提出的方法:

对抗互补学习(ACoL),以便在弱监督下自动定位语义兴趣的整体对象.

本文证明了

  • location map可以通过选择最后一个卷积层的class-specific feature maps直接获得,从而提供了一个简单的方式识别目标区域.
  • 本文采用两个平行的分类器来获得object-location.

ACoL的演示过程:

  1. 先训练A分类,然后找出对应类别的feature map.
  2. 在训练B的过程中把这A部分的feature map擦除,因此B可以再学到该类别的其他区域.
  3. 然后再把B的特征图拿去擦除A,让A去学习B的补集,这样循环互补.最后,将两个分支的目标定位图进行融合,得到完整的目标区域。

如图所示:

图片输入到CNN网络,提取到特征图(公共特征层)后将输入两个CNN分支(我认为这张图画的不是很严谨,因为三个CNN从代码里面看并不是同一个网络.)

提取出的特征进入第一个分支后会检测出某些内容,如图检测出了马的头和尾巴.

之后再把已经定位到的位置(头和尾巴)擦除(erase),再将新的特征图输入第二个CNN分支.因为擦除操作所以无法检测出头和尾巴,因此在第二个分支中检测到了前腿.

最终通过将两个分支融合得到了完整的定位图.

ACoL与AE相比的优势:

  1. 将两个分类器整合成一个网络,而AE独立地训练三个网络来进行对抗性擦除;

  2. AE需要不断迭代的产生map,他必须forward network多次,但是本文只用一次

  3. AE采用CAM来产生localisation map图,因此需要分为两步,本文只用一步, 参考Learning Deep Features for Discriminative Localization.

3.ACoL结构:

        

提出的ACoL共有三个组成部分

  • Backbone:一个全卷积网络用来特征提取.可以是VGG;ResNet etc(这里用的是Resnet). 用来检测特征(mid-level feature map).因为前面不会把特征提取的很详细.
  • ClassifierA
  • ClassifierB
def forward(self, inputs, labels):x = self.backbone(inputs)  #middle level future mapscls_output = []cams = []for idx, cls in enumerate(self.cls_recipe): #pp模型 #[p,p] 1,poutput = self.classifiers[idx](x).squeeze(-1).squeeze(-1) ##将middle level特征图分别传进两个分支cls_output.append(output)cam = self.generate_cam(idx, x, labels)
#[0.9,0.91,0.80]  [F,T,F]  [0,1.0] (热力图中红色的部分是1) 
#[0.9,0,0.8] (擦除操作:用0替代1)cams.append(cam)if idx < len(self.cls_recipe) - 1:mask = (cam > self.deltas[idx]).unsqueeze(1).byte() #deltas的值设置为0.9x = x.masked_fill(mask, value=0) #擦除. else:v_cls_output = torch.stack(cls_output) #将两个分支得到的结果融合v_cams = torch.stack(cams) #热力图叠加return v_cls_output, v_cams

        

这篇关于Adversarial Complementary Learning for Weakly Supervised Object Localization模型解析(基于对抗互补学习的弱监督目标定位)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824202

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧