深度学习-生成模型:Generation(Tranform Vector To Object with RNN)【PixelRNN、VAE(变分自编码器)、GAN(生成对抗网络)】 一、Generator的分类二、Native Generator (AutoEncoder's Decoder)三、PixelRNN1、生成句子序列2、生成图片3、生成音频:WaveNet4、生成视频:Video
本节目标 1.看懂GAN 基础架构的代码; 2.重点是GAN 的损失函数的构成; 3.理解如何从 GAN 修改成CGAN; 4.尝试复现本章实战任务 任务描述 GAN 的任务是生成,用两个模型相互对抗,来增强生成模型的效果。此处准备的数据集是MNIST手写数字,希望生成类似的手写数字的图像。 判别器和生成器:生成器 G 是创造者,负责生成新的数据实例,而判别器 D
原文标题:MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks 原文作者:Dan Li , Dacheng Chen , Lei Shi , Baihong Jin , Jonathan Goh , and See-Kiong Ng 原文来源:2019I
GAN Ian Goodfellow 在 NIPS 2016 上的 tutorial 演讲依旧是聊他的代表作生成对抗网络(GAN/Generative Adversarial Networks),毕竟 Ian 就是「对抗生成网络之父」。这两年,他每到大会就会讲 GAN,并且每次都会有一些新的干货,当然这次也不例外。 可以说,这几年在机器学习领域最亮最火最耀眼的新思想就是生成对抗网络了。这
基于资源的约束委派(RBCD)是在Windows Server 2012中新加入的功能,与传统的约束委派相比,它不再需要域管理员权限去设置相关属性。RBCD把设置委派的权限赋予了机器自身,既机器自己可以决定谁可以被委派来控制我。也就是说机器自身可以直接在自己账户上配置msDS-AllowedToActOnBehalfOfOtherIdentity属性来设置RBCD。 所以核心就是谁或什么权限能修改