本文主要是介绍简单易上手的生成对抗网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
模型原理
生成对抗网络是指一类采用对抗训练方式进行学习的深度生成模型,包含的判别网络和生成网络都可以根据不同的生成任务使用不同的网络结构。
生成器: 通过机器生成数据,最终目的是骗过判别器。
判别器: 判断这张图像是真实的还是机器生成的,目的是找出生成器做的假数据。
构建GAN模型的基本逻辑: 现实问题需求→建立实现功能的GAN框架(编程)→训练GAN(生成网络、对抗网络)→成熟的GAN模型→应用。
GAN训练过程:
生成器生成假数据,然后将生成的假数据和真数据都输入判别器,判别器要判断出哪些是真的哪些是假的。判别器第一次判别出来的肯定有很大的误差,然后我们根据误差来优化判别器。现在判别器水平提高了,生成器生成的数据很难再骗过判别器了,所以我们得反过来优化生成器,之后生成器水平提高了,然后反过来继续训练判别器,判别器水平又提高了,再反过来训练生成器,就这样循环往复,直到达到纳什均衡。
GAN的发展历程
- GAN的基本思想起源于2014年,由伊恩·古德费洛等人首次提出。
- DCGAN,它在生成器和判别器中都使用了卷积层,取得了更好的图像生成效果。
- ConditionalGAN,通过引入条件信息指导生成器生成特定类型的数据。 Wasserstein
- WGAN使用Wasserstein距离作为损失函数,为GAN的训练提供了更稳定的优化方法,提高了生成样本的质量。
代码实现
DCGAN模型:
generator = Sequential()
generator.add(Dense(7 * 7 * 128, input_shape=[100]))
generator.add(Reshape([7, 7, 128]))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding="same",activation="relu"))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(1, kernel_size=5, strides=2, padding="same",activation="tanh"))discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=5, strides=2, padding="same",activation=LeakyReLU(0.3),input_shape=[28, 28, 1]))
discriminator.add(Dropout(0.5))
discriminator.add(Conv2D(128, kernel_size=5, strides=2, padding="same",activation=LeakyReLU(0.3)))
discriminator.add(Dropout(0.5))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation="sigmoid"))
模型训练:
GAN =Sequential([generator,discriminator])
discriminator.compile(optimizer='adam',loss='binary_crossentropy')
discriminator.trainable = FalseGAN.compile(optimizer='adam',loss='binary_crossentropy')epochs = 150
batch_size = 100
noise_shape=100with tf.device('/gpu:0'):for epoch in range(epochs):print(f"Currently on Epoch {epoch+1}")for i in range(X_train.shape[0]//batch_size):if (i+1)%50 == 0:print(f"\tCurrently on batch number {i+1} of {X_train.shape[0]//batch_size}")noise=np.random.normal(size=[batch_size,noise_shape])gen_image = generator.predict_on_batch(noise)train_dataset = X_train[i*batch_size:(i+1)*batch_size]train_label=np.ones(shape=(batch_size,1))discriminator.trainable = Trued_loss_real=discriminator.train_on_batch(train_dataset,train_label)train_label=np.zeros(shape=(batch_size,1))d_loss_fake=discriminator.train_on_batch(gen_image,train_label)noise=np.random.normal(size=[batch_size,noise_shape])train_label=np.ones(shape=(batch_size,1))discriminator.trainable = False #while training the generator as combined model,discriminator training should be turned offd_g_loss_batch =GAN.train_on_batch(noise, train_label)if epoch % 10 == 0:samples = 10x_fake = generator.predict(np.random.normal(loc=0, scale=1, size=(samples, 100)))for k in range(samples):plt.subplot(2, 5, k+1)plt.imshow(x_fake[k].reshape(28, 28), cmap='gray')plt.xticks([])plt.yticks([])plt.tight_layout()plt.show()print('Training is complete')
使用np.random.normal生成的噪声被作为输入给发生器:
noise=np.random.normal(loc=0, scale=1, size=(100,noise_shape))
gen_image = generator.predict(noise)
plt.imshow(noise)
plt.title('DCGAN Noise')
这篇关于简单易上手的生成对抗网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!