when 魏云超组的18年cvpr spot who 弱监督语义分割问题的新方法,用扩张卷积得到注意力图,可能能够在GAIN的大框架上面修改 why 提出 尽管弱监督分割方法取得了显着的进步,但仍然不如全监督的方法。我们认为性能差距主要来自他们学习从图像级监督产生高质量密集对象定位图的限制。为了弥补这种差距,我们重新审视了空洞卷积[1]并揭示了如何以一种新颖的方式利用它来有效地克服弱
when cvpr18 what 本文研究了仅使用图像级标签作为监督来学习图像语义分割网络的问题,这一点很重要,因为它可以显着减少人类的标注工作。最近关于该问题的最新方法首先使用深度分类网络推断每个对象类的稀疏和鉴别区域,然后使用鉴别区域作为监督来训练语义分割网络。在种子区域扩展的传统图像分割方法的启发下,我们提出从鉴别区域开始训练语义分割网络,逐步增加种子区域扩展的像素级监督。种子区域扩
who(对谁有效) 弱监督图像语义分割 where 只有图像级标签的数据 when CVPR 2017 what(WILDCAT是什么) 这篇论文提出了一个框架,可以使用弱监督的方法识别一个物体显著的局部特征。首先我们来直观感受下结果,如下图所示,WILDCAT可以识别狗的头部和腿部信息,从而利用这些信息来对狗进行Localization和segmentation. 结
《Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects》论文解读 Abstract 1. Introduction 2. Domain Adaptation Framework 2.1. Training 2.1.1. 2D he
When the number of class is n, the number of this method is 2n. As the photo show. Every class separated to foreground and background. Q1: The ‘C’ on this photo means the number of class? If do, wh
《RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing》论文阅读 文章目录 《RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing》论文阅读论文简介摘要介绍本文主要贡献 提出的网络框架