【论文总结】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation

本文主要是介绍【论文总结】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

      这篇文章研究了如何从弱注释的训练数据(如边界框或图像级标签)或少量强标记图像和许多弱标记图像的组合中学习DCNN用于语义图像分割的问题,在弱超监督和半监督条件下提出了期望最大化(EM)方法。

代码:https://bitbucket.org/deeplab/deeplab-public(caffe框架)

二、研究内容及方法

      文章将焦点放在用弱标签训练调参上,所以训练阶段没使用CRF,只在测试阶段使用。

编码:m表示像素,Ym表示像素m的标签。如果图片上出现了第标签,即  zl = 1  。

(一)像素级标注(看不到)通过mini-batch梯度下降优化损失函数J(θ)。

(二)图像级标注(可看到):提出EM方法学习模型参数θ,分为EM-Fixed EM-Adapt

EM-Fixed 如下图Algorithm 1所示:


      算法先将logP(z|y) 因式分解,这样可以独立计算每个像素的E-step分割。设定前景偏置(fg bias)大于背景偏置(bg bias),避免将某些像素归为背景里。过程如下图所示:

    

这篇关于【论文总结】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054219

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel