线性回归 quickstart

2024-03-16 23:36
文章标签 回归 线性 quickstart

本文主要是介绍线性回归 quickstart,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

构建一元一次方程

100个(X, y ),大概是’y=3x+4’

import numpy as npnp.random.seed(42)  # to make this code example reproducible
m = 100  # number of instances
X = 2 * np.random.rand(m, 1)  # column vector
y = 4 + 3 * X + np.random.randn(m, 1)  # column vector

将坐标可视化

import matplotlib.pyplot as pltplt.figure(figsize=(6, 4))
plt.scatter(X, y, c='b', label='Data points')
plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.legend()
plt.show()

在这里插入图片描述

根据做坐标数据,推出函数

矩阵计算,怎么计算的不用管,只需要知道根据坐标就可以计算得出

from sklearn.preprocessing import add_dummy_featureX_b = add_dummy_feature(X)  # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y

输出
在这里插入图片描述
这里有两个参数,对应y=ax+b中的a,b,现在只需要根据横坐标的起始结束0,2就可以画出线性

也是通过上述的矩阵计算

X_new = np.array([[0], [2]])
X_new_b = add_dummy_feature(X_new)  # add x0 = 1 to each instance
y_predict = X_new_b @ theta_best
y_predict

输出
在这里插入图片描述
也就是,我们得到两个坐标,(0, 4.21509616),(2, 9.75532293),根据这两个点,我们就可以画出一条线

import matplotlib.pyplot as pltplt.figure(figsize=(6, 4))plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

在这里插入图片描述
图中红色的线就是我们根据数据推出来的,也就是通过数据学习到的,然后可以根据红色的线,我们就可以去预测其他的数据了,这就是我们机器学习的过程

简化流程,得到参数ab

直接使用sklearn提供的LinearRegression模型,输入数据就可以得到参数了

from sklearn.linear_model import LinearRegressionlin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_

输出
在这里插入图片描述

再跟进起始结束,就可以画出线了

X_new = np.array([[0], [2]])
lin_reg.predict(X_new)y_predict = lin_reg.predict(X_new)
y_predict

画图

import matplotlib.pyplot as pltplt.figure(figsize=(6, 4))plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")plt.xlabel("x")
plt.ylabel("y")
plt.axis([0, 2, 0, 15])
plt.grid()
plt.show()

在这里插入图片描述
到这里,已经完成了入门

这篇关于线性回归 quickstart的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817106

相关文章

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

带头结点的线性链表的基本操作

持续了好久,终于有了这篇博客,链表的操作需要借助图像模型进行反复学习,这里尽可能的整理并记录下自己的思考,以备后面复习,和大家分享。需要说明的是,我们从实际应用角度出发重新定义了线性表。 一. 定义 从上一篇文章可以看到,由于链表在空间的合理利用上和插入、删除时不需要移动等优点,因此在很多场合下,它是线性表的首选存储结构。然而,它也存在某些实现的缺点,如求线性表的长度时不如顺序存储结构的

浙大数据结构:02-线性结构4 Pop Sequence

这道题我们采用数组来模拟堆栈和队列。 简单说一下大致思路,我们用栈来存1234.....,队列来存输入的一组数据,栈与队列进行匹配,相同就pop 机翻 1、条件准备 stk是栈,que是队列。 tt指向的是栈中下标,front指向队头,rear指向队尾。 初始化栈顶为0,队头为0,队尾为-1 #include<iostream>using namespace std;#defi

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

C#中的各种画刷, PathGradientBrush、线性渐变(LinearGradientBrush)和径向渐变的区别

在C#中,画刷(Brush)是用来填充图形(如形状或文本)内部区域的对象。在.NET框架中,画刷是System.Drawing命名空间的一部分,通常用于GDI+绘图操作。以下是一些常用的画刷类型: SolidBrush:用于创建单色填充的画刷。HatchBrush:用于创建具有图案填充的画刷。TextureBrush:用于创建具有图像纹理填充的画刷。LinearGradientBrush:用于创

【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

目录  Wald 估计与简单控制回归的比较 CausalPy 和 多变量模型 感兴趣的系数 复杂化工具变量公式  Wald 估计与简单控制回归的比较 但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。 naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df[

(感知机-Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法

定义 假设输入空间(特征空间)是 χ \chi χ ⊆ R n \subseteq R^n ⊆Rn,输出空间是y = { + 1 , − 1 } =\{+1,-1 \} ={+1,−1} 。输入 x ∈ χ x \in \chi x∈χ表示实例的特征向量,对应于输入空间(特征空间)的点;输出 y ∈ y \in y∈y表示实例的类别。由输入空间到输出空间的如下函数: f ( x ) = s