【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

2024-09-07 22:20

本文主要是介绍【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 Wald 估计与简单控制回归的比较

CausalPy 和 多变量模型

感兴趣的系数

复杂化工具变量公式


 Wald 估计与简单控制回归的比较

但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。

naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df["education"])
)
az.summary(idata_reg, var_names=["beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

在这里,我们看到包含我们的工具变量和处理变量的回归中,分配给我们的工具变量 `nearcollege_indicator` 的系数权重 beta_z[nearcollege_indicator] 进一步向 0 缩小。这在一定程度上表明排除限制假设仍然是合理的。工具变量的影响被吸收到了处理变量更直接的影响中。

ols_estimate = az.extract(idata_reg["posterior"])["beta_z"].sel(covariates="education")
fig, axs = plt.subplots(2, 1, figsize=(7, 9))
axs = axs.flatten()
ax = axs[0]
ax1 = axs[1]
ax.hist(estimate,bins=30,ec="black",alpha=0.5,label=r"IV $\beta$ Education",rasterized=True,
)
ax1.hist(ols_estimate,bins=30,ec="black",alpha=0.5,label=r"Simple $\beta$ Education",color="red",rasterized=True,
)
ax.axvline(np.mean(estimate),linestyle="--",color="k",label=f"Expected IV Estimate: {np.round(np.mean(estimate.values), 2)}",
)
ax1.axvline(np.mean(ols_estimate),linestyle="--",color="k",label=f"Expected: {np.round(np.mean(ols_estimate.values), 2)}",
)
ax1.set_xlabel(r"$\beta$ coefficient Education")ax.legend()
ax1.legend(loc="upper left")
ax.set_title("Estimated IV Effect \n  Returns to Schooling",
)
ax1.set_title("Estimated Simple Effect \n  Returns to Schooling");

注意这里简单回归和工具变量估计之间的显著差异。这种对比在许多方面是工具变量设计的核心。通过为我们的问题提出一个工具变量模型,我们争论的是简单回归和工具变量估计之间的差异是由于混淆变量的影响,这种影响扭曲了我们对处理变量对结果的理解。工具变量设计旨在消除这种扭曲效应。了解这些估计之间的差异大小可以让我们感受到所谓的混淆变量所产生的影响。

CausalPy 和 多变量模型

现在我们使用 CausalPy 的贝叶斯工具变量回归来拟合模型。在这里,我们可以明确地陈述构成我们模型的结构方程。重要的是,我们确保包含在工具变量公式中的控制变量也被包含在结果公式中。

sample_kwargs = {"chains": 4,"cores": 4,"target_accept": 0.95,"progressbar": True,"nuts_sampler": "numpyro",  ## requires Jax and Numpyro install"idata_kwargs": {"log_likelihood": True},
}
instruments_formula = "education ~ 1 + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator"
formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"
instruments_data = df[["education","nearcollege_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.summary(iv.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

感兴趣的系数

如我们所见,beta_z[education] 系数记录了我们的 LATE 估计,并且实质上恢复了与上面的两步 Wald 估计相同的价值。同时请注意,experience_1 变量似乎与其他变量处于不同的数量级。

默认情况下,InstrumentalVariable 类不会从先验预测分布或后验预测分布中采样,就像典型的 CausalPy 模型那样。这主要是因为在工具变量回归中,重点在于 beta_z 和 beta_t 参数,以及在 beta_z[education] 上记录的处理效应的焦点参数。

然而,在模型估计之后完全有可能从后验预测分布中采样。如果您确实希望从后验预测分布中采样,我们强烈建议安装并使用 Jax 采样器进行后验预测采样,因为它通常比基础的 pymc 采样器快得多。

iv.model.sample_predictive_distribution(ppc_sampler="jax")

同样地,我们也可以提取先验预测检查,并观察后验分布如何更新了我们的先验。 

with iv.model:iv.idata.extend(pm.sample_prior_predictive(var_names=["beta_z"]))
az.plot_dist_comparison(iv.idata, var_names=["beta_z"], coords={"covariates": ["education"]}, figsize=(8, 4)
);

上面的图展示了我们对处理效应可能实现的广泛假设,以及在考虑到观测数据的情况下,可能实现的狭窄范围。

复杂化工具变量公式

我们可以通过添加额外的工具变量来进一步评估加强工具变量效应的想法。一个自然的想法是观察当我们添加额外的 `nearcollege2_indicator` 时,教育方程中的工具变量值如何变化。从我们对数据的视觉检查来看,似乎有必要尝试确定接近两年制和四年制大学如何影响教育程度。

instruments_formula = """education ~  experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator + nearcollege2_indicator"""formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"instruments_data = df[["education","nearcollege_indicator","nearcollege2_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv1 = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)
iv1.model.sample_predictive_distribution(ppc_sampler="jax")az.summary(iv1.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

 

在这里,我们看到额外工具变量 `beta_t[nearcollege2_indicator]` 和原有工具变量 `beta_t[nearcollege_indicator]` 的加入使得 LATE 估计值从 0.13 提升到了 0.16。这在直觉上是合理的,并且或许增强了整体观点,即接近度是一个好的工具变量。

这篇关于【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146323

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行