【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

2024-09-07 22:20

本文主要是介绍【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 Wald 估计与简单控制回归的比较

CausalPy 和 多变量模型

感兴趣的系数

复杂化工具变量公式


 Wald 估计与简单控制回归的比较

但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。

naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df["education"])
)
az.summary(idata_reg, var_names=["beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

在这里,我们看到包含我们的工具变量和处理变量的回归中,分配给我们的工具变量 `nearcollege_indicator` 的系数权重 beta_z[nearcollege_indicator] 进一步向 0 缩小。这在一定程度上表明排除限制假设仍然是合理的。工具变量的影响被吸收到了处理变量更直接的影响中。

ols_estimate = az.extract(idata_reg["posterior"])["beta_z"].sel(covariates="education")
fig, axs = plt.subplots(2, 1, figsize=(7, 9))
axs = axs.flatten()
ax = axs[0]
ax1 = axs[1]
ax.hist(estimate,bins=30,ec="black",alpha=0.5,label=r"IV $\beta$ Education",rasterized=True,
)
ax1.hist(ols_estimate,bins=30,ec="black",alpha=0.5,label=r"Simple $\beta$ Education",color="red",rasterized=True,
)
ax.axvline(np.mean(estimate),linestyle="--",color="k",label=f"Expected IV Estimate: {np.round(np.mean(estimate.values), 2)}",
)
ax1.axvline(np.mean(ols_estimate),linestyle="--",color="k",label=f"Expected: {np.round(np.mean(ols_estimate.values), 2)}",
)
ax1.set_xlabel(r"$\beta$ coefficient Education")ax.legend()
ax1.legend(loc="upper left")
ax.set_title("Estimated IV Effect \n  Returns to Schooling",
)
ax1.set_title("Estimated Simple Effect \n  Returns to Schooling");

注意这里简单回归和工具变量估计之间的显著差异。这种对比在许多方面是工具变量设计的核心。通过为我们的问题提出一个工具变量模型,我们争论的是简单回归和工具变量估计之间的差异是由于混淆变量的影响,这种影响扭曲了我们对处理变量对结果的理解。工具变量设计旨在消除这种扭曲效应。了解这些估计之间的差异大小可以让我们感受到所谓的混淆变量所产生的影响。

CausalPy 和 多变量模型

现在我们使用 CausalPy 的贝叶斯工具变量回归来拟合模型。在这里,我们可以明确地陈述构成我们模型的结构方程。重要的是,我们确保包含在工具变量公式中的控制变量也被包含在结果公式中。

sample_kwargs = {"chains": 4,"cores": 4,"target_accept": 0.95,"progressbar": True,"nuts_sampler": "numpyro",  ## requires Jax and Numpyro install"idata_kwargs": {"log_likelihood": True},
}
instruments_formula = "education ~ 1 + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator"
formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"
instruments_data = df[["education","nearcollege_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.summary(iv.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

感兴趣的系数

如我们所见,beta_z[education] 系数记录了我们的 LATE 估计,并且实质上恢复了与上面的两步 Wald 估计相同的价值。同时请注意,experience_1 变量似乎与其他变量处于不同的数量级。

默认情况下,InstrumentalVariable 类不会从先验预测分布或后验预测分布中采样,就像典型的 CausalPy 模型那样。这主要是因为在工具变量回归中,重点在于 beta_z 和 beta_t 参数,以及在 beta_z[education] 上记录的处理效应的焦点参数。

然而,在模型估计之后完全有可能从后验预测分布中采样。如果您确实希望从后验预测分布中采样,我们强烈建议安装并使用 Jax 采样器进行后验预测采样,因为它通常比基础的 pymc 采样器快得多。

iv.model.sample_predictive_distribution(ppc_sampler="jax")

同样地,我们也可以提取先验预测检查,并观察后验分布如何更新了我们的先验。 

with iv.model:iv.idata.extend(pm.sample_prior_predictive(var_names=["beta_z"]))
az.plot_dist_comparison(iv.idata, var_names=["beta_z"], coords={"covariates": ["education"]}, figsize=(8, 4)
);

上面的图展示了我们对处理效应可能实现的广泛假设,以及在考虑到观测数据的情况下,可能实现的狭窄范围。

复杂化工具变量公式

我们可以通过添加额外的工具变量来进一步评估加强工具变量效应的想法。一个自然的想法是观察当我们添加额外的 `nearcollege2_indicator` 时,教育方程中的工具变量值如何变化。从我们对数据的视觉检查来看,似乎有必要尝试确定接近两年制和四年制大学如何影响教育程度。

instruments_formula = """education ~  experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator + nearcollege2_indicator"""formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"instruments_data = df[["education","nearcollege_indicator","nearcollege2_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv1 = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)
iv1.model.sample_predictive_distribution(ppc_sampler="jax")az.summary(iv1.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

 

在这里,我们看到额外工具变量 `beta_t[nearcollege2_indicator]` 和原有工具变量 `beta_t[nearcollege_indicator]` 的加入使得 LATE 估计值从 0.13 提升到了 0.16。这在直觉上是合理的,并且或许增强了整体观点,即接近度是一个好的工具变量。

这篇关于【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146323

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand