深度学习与大模型第3课:线性回归模型的构建与训练

2024-09-07 22:36

本文主要是介绍深度学习与大模型第3课:线性回归模型的构建与训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 使用Python实现线性回归:从基础到scikit-learn
    • 1. 环境准备
    • 2. 数据准备和可视化
    • 3. 使用numpy实现线性回归
    • 4. 使用模型进行预测
    • 5. 可视化预测结果
    • 6. 使用scikit-learn实现线性回归
    • 7. 梯度下降法
    • 8. 随机梯度下降和小批量梯度下降
    • 9. 比较不同的梯度下降方法
    • 总结

使用Python实现线性回归:从基础到scikit-learn

线性回归是机器学习中最基础也是最重要的算法之一。本文将带领读者从基础的numpy实现,到使用成熟的scikit-learn库,全面了解线性回归的实现过程。我们将通过实际的代码示例和可视化来深入理解这个算法。

1. 环境准备

首先,让我们导入所需的库并设置环境:

from __future__ import division, print_function, unicode_literals
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
np.random.seed(42)
%matplotlib inline
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
warnings.filterwarnings(action="ignore", message="^internal gelsd")

这段代码导入了必要的库,设置了随机种子以确保结果可重现,并配置了matplotlib的一些参数。

2. 数据准备和可视化

假设我们已经有了训练数据X和y。让我们先来可视化这些数据:

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个散点图,展示我们的数据分布。

3. 使用numpy实现线性回归

现在,让我们使用numpy来手动实现线性回归:

X_b = np.c_[np.ones((100, 1)), X]  # 添加x0 = 1到每个实例
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

这里,我们首先添加了一列1到X矩阵,然后使用正规方程计算最优的theta值。

4. 使用模型进行预测

有了theta_best,我们就可以进行预测了:

X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]
y_predict = X_new_b.dot(theta_best)

5. 可视化预测结果

让我们把原始数据和预测结果可视化:

plt.plot(X_new, y_predict, "r-", linewidth=2, label="Predictions")
plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个图,显示原始数据点和我们的预测线。

6. 使用scikit-learn实现线性回归

最后,让我们看看如何使用scikit-learn来实现相同的功能:

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print("截距:", lin_reg.intercept_)
print("系数:", lin_reg.coef_)
# 预测
print("预测结果:", lin_reg.predict(X_new))

使用scikit-learn,我们只需要几行代码就可以完成模型的训练和预测。

7. 梯度下降法

除了使用正规方程,我们还可以使用梯度下降法来训练线性回归模型。以下是批量梯度下降的实现:

eta = 0.1  # 学习率
n_iterations = 1000
m = 100theta = np.random.randn(2,1)  # 随机初始化
for iteration in range(n_iterations):gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsprint("梯度下降法得到的theta:", theta)

我们还可以可视化梯度下降的过程:

theta_path_bgd = []def plot_gradient_descent(theta, eta, theta_path=None):m = len(X_b)plt.plot(X, y, "b.")n_iterations = 1000for iteration in range(n_iterations):if iteration < 10:y_predict = X_new_b.dot(theta)style = "b-" if iteration > 0 else "r--"plt.plot(X_new, y_predict, style)gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel("$x_1$", fontsize=18)plt.axis([0, 2, 0, 15])plt.title(r"$\eta = {}$".format(eta), fontsize=16)np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化plt.figure(figsize=(10,4))
plt.subplot(131); plot_gradient_descent(theta, eta=0.02)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.subplot(132); plot_gradient_descent(theta, eta=0.1, theta_path=theta_path_bgd)
plt.subplot(133); plot_gradient_descent(theta, eta=0.5)
plt.show()

这段代码展示了不同学习率对梯度下降过程的影响。

8. 随机梯度下降和小批量梯度下降

除了批量梯度下降,我们还可以实现随机梯度下降(SGD)和小批量梯度下降:

# 随机梯度下降
theta_path_sgd = []
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0, t1 = 5, 50  # 学习率调度超参数def learning_schedule(t):return t0 / (t + t1)theta = np.random.randn(2,1)  # 随机初始化
for epoch in range(n_epochs):for i in range(m):random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2 * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(epoch * m + i)theta = theta - eta * gradientstheta_path_sgd.append(theta)# 小批量梯度下降
theta_path_mgd = []
n_iterations = 50
minibatch_size = 20
np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化
t0, t1 = 200, 1000def learning_schedule(t):return t0 / (t + t1)t = 0
for epoch in range(n_iterations):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0, m, minibatch_size):t += 1xi = X_b_shuffled[i:i+minibatch_size]yi = y_shuffled[i:i+minibatch_size]gradients = 2/minibatch_size * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(t)theta = theta - eta * gradientstheta_path_mgd.append(theta)

9. 比较不同的梯度下降方法

最后,我们可以比较不同梯度下降方法的参数路径:

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)plt.figure(figsize=(7,4))
plt.plot(theta_path_sgd[:, 0], theta_path_sgd[:, 1], "r-s", linewidth=1, label="Stochastic")
plt.plot(theta_path_mgd[:, 0], theta_path_mgd[:, 1], "g-+", linewidth=2, label="Mini-batch")
plt.plot(theta_path_bgd[:, 0], theta_path_bgd[:, 1], "b-o", linewidth=3, label="Batch")
plt.legend(loc="upper left", fontsize=16)
plt.xlabel(r"$\theta_0$", fontsize=20)
plt.ylabel(r"$\theta_1$   ", fontsize=20, rotation=0)
plt.axis([2.5, 4.5, 2.3, 3.9])
plt.show()

总结

在这篇博客中,我们学习了如何使用numpy手动实现线性回归,以及如何利用scikit-learn快速实现相同的功能。我们还深入探讨了不同的梯度下降方法,包括批量梯度下降、随机梯度下降和小批量梯度下降,并通过可视化比较了它们的性能。

通过这些实现和比较,我们不仅可以更深入地理解线性回归的原理,还能体会到使用成熟库的便利性,以及不同优化方法的特点。这些知识对于理解更复杂的机器学习算法和深度学习模型都是非常有帮助的。

希望这篇教程对你有所帮助!如果你有任何问题,欢迎在评论区留言。

这篇关于深度学习与大模型第3课:线性回归模型的构建与训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146354

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06