深度学习与大模型第3课:线性回归模型的构建与训练

2024-09-07 22:36

本文主要是介绍深度学习与大模型第3课:线性回归模型的构建与训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 使用Python实现线性回归:从基础到scikit-learn
    • 1. 环境准备
    • 2. 数据准备和可视化
    • 3. 使用numpy实现线性回归
    • 4. 使用模型进行预测
    • 5. 可视化预测结果
    • 6. 使用scikit-learn实现线性回归
    • 7. 梯度下降法
    • 8. 随机梯度下降和小批量梯度下降
    • 9. 比较不同的梯度下降方法
    • 总结

使用Python实现线性回归:从基础到scikit-learn

线性回归是机器学习中最基础也是最重要的算法之一。本文将带领读者从基础的numpy实现,到使用成熟的scikit-learn库,全面了解线性回归的实现过程。我们将通过实际的代码示例和可视化来深入理解这个算法。

1. 环境准备

首先,让我们导入所需的库并设置环境:

from __future__ import division, print_function, unicode_literals
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
np.random.seed(42)
%matplotlib inline
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
warnings.filterwarnings(action="ignore", message="^internal gelsd")

这段代码导入了必要的库,设置了随机种子以确保结果可重现,并配置了matplotlib的一些参数。

2. 数据准备和可视化

假设我们已经有了训练数据X和y。让我们先来可视化这些数据:

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个散点图,展示我们的数据分布。

3. 使用numpy实现线性回归

现在,让我们使用numpy来手动实现线性回归:

X_b = np.c_[np.ones((100, 1)), X]  # 添加x0 = 1到每个实例
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

这里,我们首先添加了一列1到X矩阵,然后使用正规方程计算最优的theta值。

4. 使用模型进行预测

有了theta_best,我们就可以进行预测了:

X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]
y_predict = X_new_b.dot(theta_best)

5. 可视化预测结果

让我们把原始数据和预测结果可视化:

plt.plot(X_new, y_predict, "r-", linewidth=2, label="Predictions")
plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个图,显示原始数据点和我们的预测线。

6. 使用scikit-learn实现线性回归

最后,让我们看看如何使用scikit-learn来实现相同的功能:

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print("截距:", lin_reg.intercept_)
print("系数:", lin_reg.coef_)
# 预测
print("预测结果:", lin_reg.predict(X_new))

使用scikit-learn,我们只需要几行代码就可以完成模型的训练和预测。

7. 梯度下降法

除了使用正规方程,我们还可以使用梯度下降法来训练线性回归模型。以下是批量梯度下降的实现:

eta = 0.1  # 学习率
n_iterations = 1000
m = 100theta = np.random.randn(2,1)  # 随机初始化
for iteration in range(n_iterations):gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsprint("梯度下降法得到的theta:", theta)

我们还可以可视化梯度下降的过程:

theta_path_bgd = []def plot_gradient_descent(theta, eta, theta_path=None):m = len(X_b)plt.plot(X, y, "b.")n_iterations = 1000for iteration in range(n_iterations):if iteration < 10:y_predict = X_new_b.dot(theta)style = "b-" if iteration > 0 else "r--"plt.plot(X_new, y_predict, style)gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel("$x_1$", fontsize=18)plt.axis([0, 2, 0, 15])plt.title(r"$\eta = {}$".format(eta), fontsize=16)np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化plt.figure(figsize=(10,4))
plt.subplot(131); plot_gradient_descent(theta, eta=0.02)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.subplot(132); plot_gradient_descent(theta, eta=0.1, theta_path=theta_path_bgd)
plt.subplot(133); plot_gradient_descent(theta, eta=0.5)
plt.show()

这段代码展示了不同学习率对梯度下降过程的影响。

8. 随机梯度下降和小批量梯度下降

除了批量梯度下降,我们还可以实现随机梯度下降(SGD)和小批量梯度下降:

# 随机梯度下降
theta_path_sgd = []
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0, t1 = 5, 50  # 学习率调度超参数def learning_schedule(t):return t0 / (t + t1)theta = np.random.randn(2,1)  # 随机初始化
for epoch in range(n_epochs):for i in range(m):random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2 * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(epoch * m + i)theta = theta - eta * gradientstheta_path_sgd.append(theta)# 小批量梯度下降
theta_path_mgd = []
n_iterations = 50
minibatch_size = 20
np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化
t0, t1 = 200, 1000def learning_schedule(t):return t0 / (t + t1)t = 0
for epoch in range(n_iterations):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0, m, minibatch_size):t += 1xi = X_b_shuffled[i:i+minibatch_size]yi = y_shuffled[i:i+minibatch_size]gradients = 2/minibatch_size * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(t)theta = theta - eta * gradientstheta_path_mgd.append(theta)

9. 比较不同的梯度下降方法

最后,我们可以比较不同梯度下降方法的参数路径:

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)plt.figure(figsize=(7,4))
plt.plot(theta_path_sgd[:, 0], theta_path_sgd[:, 1], "r-s", linewidth=1, label="Stochastic")
plt.plot(theta_path_mgd[:, 0], theta_path_mgd[:, 1], "g-+", linewidth=2, label="Mini-batch")
plt.plot(theta_path_bgd[:, 0], theta_path_bgd[:, 1], "b-o", linewidth=3, label="Batch")
plt.legend(loc="upper left", fontsize=16)
plt.xlabel(r"$\theta_0$", fontsize=20)
plt.ylabel(r"$\theta_1$   ", fontsize=20, rotation=0)
plt.axis([2.5, 4.5, 2.3, 3.9])
plt.show()

总结

在这篇博客中,我们学习了如何使用numpy手动实现线性回归,以及如何利用scikit-learn快速实现相同的功能。我们还深入探讨了不同的梯度下降方法,包括批量梯度下降、随机梯度下降和小批量梯度下降,并通过可视化比较了它们的性能。

通过这些实现和比较,我们不仅可以更深入地理解线性回归的原理,还能体会到使用成熟库的便利性,以及不同优化方法的特点。这些知识对于理解更复杂的机器学习算法和深度学习模型都是非常有帮助的。

希望这篇教程对你有所帮助!如果你有任何问题,欢迎在评论区留言。

这篇关于深度学习与大模型第3课:线性回归模型的构建与训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146354

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化: