深度学习与大模型第3课:线性回归模型的构建与训练

2024-09-07 22:36

本文主要是介绍深度学习与大模型第3课:线性回归模型的构建与训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 使用Python实现线性回归:从基础到scikit-learn
    • 1. 环境准备
    • 2. 数据准备和可视化
    • 3. 使用numpy实现线性回归
    • 4. 使用模型进行预测
    • 5. 可视化预测结果
    • 6. 使用scikit-learn实现线性回归
    • 7. 梯度下降法
    • 8. 随机梯度下降和小批量梯度下降
    • 9. 比较不同的梯度下降方法
    • 总结

使用Python实现线性回归:从基础到scikit-learn

线性回归是机器学习中最基础也是最重要的算法之一。本文将带领读者从基础的numpy实现,到使用成熟的scikit-learn库,全面了解线性回归的实现过程。我们将通过实际的代码示例和可视化来深入理解这个算法。

1. 环境准备

首先,让我们导入所需的库并设置环境:

from __future__ import division, print_function, unicode_literals
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
np.random.seed(42)
%matplotlib inline
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
warnings.filterwarnings(action="ignore", message="^internal gelsd")

这段代码导入了必要的库,设置了随机种子以确保结果可重现,并配置了matplotlib的一些参数。

2. 数据准备和可视化

假设我们已经有了训练数据X和y。让我们先来可视化这些数据:

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个散点图,展示我们的数据分布。

3. 使用numpy实现线性回归

现在,让我们使用numpy来手动实现线性回归:

X_b = np.c_[np.ones((100, 1)), X]  # 添加x0 = 1到每个实例
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

这里,我们首先添加了一列1到X矩阵,然后使用正规方程计算最优的theta值。

4. 使用模型进行预测

有了theta_best,我们就可以进行预测了:

X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]
y_predict = X_new_b.dot(theta_best)

5. 可视化预测结果

让我们把原始数据和预测结果可视化:

plt.plot(X_new, y_predict, "r-", linewidth=2, label="Predictions")
plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个图,显示原始数据点和我们的预测线。

6. 使用scikit-learn实现线性回归

最后,让我们看看如何使用scikit-learn来实现相同的功能:

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print("截距:", lin_reg.intercept_)
print("系数:", lin_reg.coef_)
# 预测
print("预测结果:", lin_reg.predict(X_new))

使用scikit-learn,我们只需要几行代码就可以完成模型的训练和预测。

7. 梯度下降法

除了使用正规方程,我们还可以使用梯度下降法来训练线性回归模型。以下是批量梯度下降的实现:

eta = 0.1  # 学习率
n_iterations = 1000
m = 100theta = np.random.randn(2,1)  # 随机初始化
for iteration in range(n_iterations):gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsprint("梯度下降法得到的theta:", theta)

我们还可以可视化梯度下降的过程:

theta_path_bgd = []def plot_gradient_descent(theta, eta, theta_path=None):m = len(X_b)plt.plot(X, y, "b.")n_iterations = 1000for iteration in range(n_iterations):if iteration < 10:y_predict = X_new_b.dot(theta)style = "b-" if iteration > 0 else "r--"plt.plot(X_new, y_predict, style)gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel("$x_1$", fontsize=18)plt.axis([0, 2, 0, 15])plt.title(r"$\eta = {}$".format(eta), fontsize=16)np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化plt.figure(figsize=(10,4))
plt.subplot(131); plot_gradient_descent(theta, eta=0.02)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.subplot(132); plot_gradient_descent(theta, eta=0.1, theta_path=theta_path_bgd)
plt.subplot(133); plot_gradient_descent(theta, eta=0.5)
plt.show()

这段代码展示了不同学习率对梯度下降过程的影响。

8. 随机梯度下降和小批量梯度下降

除了批量梯度下降,我们还可以实现随机梯度下降(SGD)和小批量梯度下降:

# 随机梯度下降
theta_path_sgd = []
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0, t1 = 5, 50  # 学习率调度超参数def learning_schedule(t):return t0 / (t + t1)theta = np.random.randn(2,1)  # 随机初始化
for epoch in range(n_epochs):for i in range(m):random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2 * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(epoch * m + i)theta = theta - eta * gradientstheta_path_sgd.append(theta)# 小批量梯度下降
theta_path_mgd = []
n_iterations = 50
minibatch_size = 20
np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化
t0, t1 = 200, 1000def learning_schedule(t):return t0 / (t + t1)t = 0
for epoch in range(n_iterations):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0, m, minibatch_size):t += 1xi = X_b_shuffled[i:i+minibatch_size]yi = y_shuffled[i:i+minibatch_size]gradients = 2/minibatch_size * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(t)theta = theta - eta * gradientstheta_path_mgd.append(theta)

9. 比较不同的梯度下降方法

最后,我们可以比较不同梯度下降方法的参数路径:

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)plt.figure(figsize=(7,4))
plt.plot(theta_path_sgd[:, 0], theta_path_sgd[:, 1], "r-s", linewidth=1, label="Stochastic")
plt.plot(theta_path_mgd[:, 0], theta_path_mgd[:, 1], "g-+", linewidth=2, label="Mini-batch")
plt.plot(theta_path_bgd[:, 0], theta_path_bgd[:, 1], "b-o", linewidth=3, label="Batch")
plt.legend(loc="upper left", fontsize=16)
plt.xlabel(r"$\theta_0$", fontsize=20)
plt.ylabel(r"$\theta_1$   ", fontsize=20, rotation=0)
plt.axis([2.5, 4.5, 2.3, 3.9])
plt.show()

总结

在这篇博客中,我们学习了如何使用numpy手动实现线性回归,以及如何利用scikit-learn快速实现相同的功能。我们还深入探讨了不同的梯度下降方法,包括批量梯度下降、随机梯度下降和小批量梯度下降,并通过可视化比较了它们的性能。

通过这些实现和比较,我们不仅可以更深入地理解线性回归的原理,还能体会到使用成熟库的便利性,以及不同优化方法的特点。这些知识对于理解更复杂的机器学习算法和深度学习模型都是非常有帮助的。

希望这篇教程对你有所帮助!如果你有任何问题,欢迎在评论区留言。

这篇关于深度学习与大模型第3课:线性回归模型的构建与训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146354

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操