深度学习与大模型第3课:线性回归模型的构建与训练

2024-09-07 22:36

本文主要是介绍深度学习与大模型第3课:线性回归模型的构建与训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 使用Python实现线性回归:从基础到scikit-learn
    • 1. 环境准备
    • 2. 数据准备和可视化
    • 3. 使用numpy实现线性回归
    • 4. 使用模型进行预测
    • 5. 可视化预测结果
    • 6. 使用scikit-learn实现线性回归
    • 7. 梯度下降法
    • 8. 随机梯度下降和小批量梯度下降
    • 9. 比较不同的梯度下降方法
    • 总结

使用Python实现线性回归:从基础到scikit-learn

线性回归是机器学习中最基础也是最重要的算法之一。本文将带领读者从基础的numpy实现,到使用成熟的scikit-learn库,全面了解线性回归的实现过程。我们将通过实际的代码示例和可视化来深入理解这个算法。

1. 环境准备

首先,让我们导入所需的库并设置环境:

from __future__ import division, print_function, unicode_literals
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
np.random.seed(42)
%matplotlib inline
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
warnings.filterwarnings(action="ignore", message="^internal gelsd")

这段代码导入了必要的库,设置了随机种子以确保结果可重现,并配置了matplotlib的一些参数。

2. 数据准备和可视化

假设我们已经有了训练数据X和y。让我们先来可视化这些数据:

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个散点图,展示我们的数据分布。

3. 使用numpy实现线性回归

现在,让我们使用numpy来手动实现线性回归:

X_b = np.c_[np.ones((100, 1)), X]  # 添加x0 = 1到每个实例
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

这里,我们首先添加了一列1到X矩阵,然后使用正规方程计算最优的theta值。

4. 使用模型进行预测

有了theta_best,我们就可以进行预测了:

X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2, 1)), X_new]
y_predict = X_new_b.dot(theta_best)

5. 可视化预测结果

让我们把原始数据和预测结果可视化:

plt.plot(X_new, y_predict, "r-", linewidth=2, label="Predictions")
plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 2, 0, 15])
plt.show()

这将绘制一个图,显示原始数据点和我们的预测线。

6. 使用scikit-learn实现线性回归

最后,让我们看看如何使用scikit-learn来实现相同的功能:

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print("截距:", lin_reg.intercept_)
print("系数:", lin_reg.coef_)
# 预测
print("预测结果:", lin_reg.predict(X_new))

使用scikit-learn,我们只需要几行代码就可以完成模型的训练和预测。

7. 梯度下降法

除了使用正规方程,我们还可以使用梯度下降法来训练线性回归模型。以下是批量梯度下降的实现:

eta = 0.1  # 学习率
n_iterations = 1000
m = 100theta = np.random.randn(2,1)  # 随机初始化
for iteration in range(n_iterations):gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsprint("梯度下降法得到的theta:", theta)

我们还可以可视化梯度下降的过程:

theta_path_bgd = []def plot_gradient_descent(theta, eta, theta_path=None):m = len(X_b)plt.plot(X, y, "b.")n_iterations = 1000for iteration in range(n_iterations):if iteration < 10:y_predict = X_new_b.dot(theta)style = "b-" if iteration > 0 else "r--"plt.plot(X_new, y_predict, style)gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)theta = theta - eta * gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel("$x_1$", fontsize=18)plt.axis([0, 2, 0, 15])plt.title(r"$\eta = {}$".format(eta), fontsize=16)np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化plt.figure(figsize=(10,4))
plt.subplot(131); plot_gradient_descent(theta, eta=0.02)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.subplot(132); plot_gradient_descent(theta, eta=0.1, theta_path=theta_path_bgd)
plt.subplot(133); plot_gradient_descent(theta, eta=0.5)
plt.show()

这段代码展示了不同学习率对梯度下降过程的影响。

8. 随机梯度下降和小批量梯度下降

除了批量梯度下降,我们还可以实现随机梯度下降(SGD)和小批量梯度下降:

# 随机梯度下降
theta_path_sgd = []
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0, t1 = 5, 50  # 学习率调度超参数def learning_schedule(t):return t0 / (t + t1)theta = np.random.randn(2,1)  # 随机初始化
for epoch in range(n_epochs):for i in range(m):random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2 * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(epoch * m + i)theta = theta - eta * gradientstheta_path_sgd.append(theta)# 小批量梯度下降
theta_path_mgd = []
n_iterations = 50
minibatch_size = 20
np.random.seed(42)
theta = np.random.randn(2,1)  # 随机初始化
t0, t1 = 200, 1000def learning_schedule(t):return t0 / (t + t1)t = 0
for epoch in range(n_iterations):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0, m, minibatch_size):t += 1xi = X_b_shuffled[i:i+minibatch_size]yi = y_shuffled[i:i+minibatch_size]gradients = 2/minibatch_size * xi.T.dot(xi.dot(theta) - yi)eta = learning_schedule(t)theta = theta - eta * gradientstheta_path_mgd.append(theta)

9. 比较不同的梯度下降方法

最后,我们可以比较不同梯度下降方法的参数路径:

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)plt.figure(figsize=(7,4))
plt.plot(theta_path_sgd[:, 0], theta_path_sgd[:, 1], "r-s", linewidth=1, label="Stochastic")
plt.plot(theta_path_mgd[:, 0], theta_path_mgd[:, 1], "g-+", linewidth=2, label="Mini-batch")
plt.plot(theta_path_bgd[:, 0], theta_path_bgd[:, 1], "b-o", linewidth=3, label="Batch")
plt.legend(loc="upper left", fontsize=16)
plt.xlabel(r"$\theta_0$", fontsize=20)
plt.ylabel(r"$\theta_1$   ", fontsize=20, rotation=0)
plt.axis([2.5, 4.5, 2.3, 3.9])
plt.show()

总结

在这篇博客中,我们学习了如何使用numpy手动实现线性回归,以及如何利用scikit-learn快速实现相同的功能。我们还深入探讨了不同的梯度下降方法,包括批量梯度下降、随机梯度下降和小批量梯度下降,并通过可视化比较了它们的性能。

通过这些实现和比较,我们不仅可以更深入地理解线性回归的原理,还能体会到使用成熟库的便利性,以及不同优化方法的特点。这些知识对于理解更复杂的机器学习算法和深度学习模型都是非常有帮助的。

希望这篇教程对你有所帮助!如果你有任何问题,欢迎在评论区留言。

这篇关于深度学习与大模型第3课:线性回归模型的构建与训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146354

相关文章

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3