基于HSV色度空间的图像深度信息提取算法FPGA实现,包含testbench和MATLAB辅助验证程序

本文主要是介绍基于HSV色度空间的图像深度信息提取算法FPGA实现,包含testbench和MATLAB辅助验证程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

​编辑2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

将FPGA结果导入到matlab显示结果如下:

matlab的对比测试结果如下:

2.算法运行软件版本

vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/08/01  
// Design Name: 
// Module Name: RGB2gray
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//
//MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等算法仿真
//微信公众号:matlabworldmodule test_image;reg i_clk;
reg i_rst;
reg [7:0] Rbuff [0:100000];
reg [7:0] Gbuff [0:100000];
reg [7:0] Bbuff [0:100000];
reg [7:0] i_Ir,i_Ig,i_Ib;
wire [10:0]o_depth;integer fids1,dat1,fids2,dat2,fids3,dat3,jj=0;//D:\FPGA_Proj\FPGAtest\codepz
initial 
beginfids1 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\R.bmp","rb");dat1  = $fread(Rbuff,fids1);$fclose(fids1);
endinitial 
beginfids2 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\G.bmp","rb");dat2  = $fread(Gbuff,fids2);$fclose(fids2);
endinitial 
beginfids3 = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\B.bmp","rb");dat3 = $fread(Bbuff,fids3);$fclose(fids3);
endinitial 
begin
i_clk=1;
i_rst=1;
#1200;
i_rst=0;
end always #5  i_clk=~i_clk;always@(posedge i_clk) 
begini_Ir<=Rbuff[jj];i_Ig<=Gbuff[jj];i_Ib<=Bbuff[jj];jj<=jj+1;
endmain_RGB2HSV main_RGB2HSV_u(
.i_clk          (i_clk),
.i_rst          (i_rst),
.i_image_R      (i_Ir),
.i_image_G      (i_Ig),
.i_image_B      (i_Ib),
.o_depth        (o_depth)
);integer fout1;
initial beginfout1 = $fopen("o_depth.txt","w");
endalways @ (posedge i_clk)beginif(jj<=66616 & jj>66616-65536)$fwrite(fout1,"%d\n",o_depth);else$fwrite(fout1,"%d\n",0);
endendmodule
0X_029m

4.算法理论概述

        在HSV(Hue, Saturation, Value)色彩模型中,颜色由色调(H)、饱和度(S)和明度(V)三个参数表示。对于深度信息提取而言,通常利用的是场景中物体表面光照变化对明度(Value)的影响,以及色彩相对不变性来推测深度层次。

       假设在理想条件下,光源强度恒定且均匀照射到不同距离的物体上,根据逆平方定律,离相机越远的物体接收到的光强会越弱,因此在灰度图像或HSV中的V通道上表现为亮度下降。由此可初步构建从明度到深度的非线性映射关系:

V=k/d+b

其中,V 是明度值,d 是深度,k 和 b 是与光源强度和环境有关的常数。

然而,在实际应用中这种关系需要通过学习或其他图像处理方法获得更精确的模型。

FPGA实现流程概览

输入处理: 将RGB图像转换为HSV色彩空间:

深度信息提取: 设计特定的硬件逻辑单元,利用预训练的或者理论推导出的深度映射函数,将HSV中的V通道值映射到深度估计值。

优化计算资源: FPGA设计中应考虑流水线并行处理多个像素点,以提高计算效率。同时,可能采用查找表(LUT)方式存储预计算好的深度映射关系,减少实时计算负担。

输出与后处理: 输出深度图,可能还需要进行噪声抑制、边缘平滑等后处理步骤,这些也可以在FPGA上实现相应的数字信号处理模块。

      需要注意的是,以上描述简化了实际问题的复杂性,真实环境中还需考虑许多其他因素,例如遮挡、反射、阴影等对深度感知的影响。此外,FPGA实现时具体电路设计和算法优化将取决于目标硬件平台的特性及资源限制。

          总结来说,基于HSV色度空间的图像深度信息提取在FPGA上实现涉及到色彩空间转换、明度与深度之间的映射建模、以及针对FPGA架构特点的并行计算和资源优化设计等多个环节。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于HSV色度空间的图像深度信息提取算法FPGA实现,包含testbench和MATLAB辅助验证程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814706

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义